

図1.15 測線位置平面図 (No.11~19)

離岸距離(m)

離岸距離(m)

190

二宮海岸6.0ポイント

離岸距離(m)

離岸距離(m)

- 2007年9月 (被災後)		
240	290	340	390

- 2007年9月 (被災後)			
1			
240	290	340	3

— 2007年9 (被災後	月 注)		
í.	1	L.	
240	290	340	

240 290 340

— 2007年9月 (被災後)			
240	290	340	390

(5) 空中写真の整理

被災区域について既往空中写真の整理を行った。 整理結果を次頁より示す。

空中写真の取得年は以下の通りである。

- 昭和53(1978)年1月撮影
- 昭和58(1983)年※ 撮影
- 昭和63(1988)年10月撮影
- 平成13(2001)年4月撮影
- 平成16(2004)年1月撮影
- 平成19(2007)年9月撮影
- ※ 撮影月不明

また、撮影日時と推算潮位(大磯港)を表1.3に示す。

撮影日時
1978/1/11 12:20

撮影日時	推算潮位(T.P.+m)
1978/1/11 12:20	-0.2
1988/10/14 11:25	-0.2
2001/4/5 1:23	-0.1
2004/11/23 10:32	-0.1

なお、汀線変化解析(後述)における潮位補正は海浜勾配を1/10として実施した。

表1.3 撮影日時及び推算潮位(大磯港)

図1.16 空中写真

(6) 海岸構造物の変遷

西湘海岸の海岸保全施設一覧を表1.4に示す。これから、漂砂系が連続する酒匂川~大磯 港の区間は、突堤3基、防波堤が1基となっている。

ここにあがっていない構造物として、中日本高速道路(7.0KP~7.5KP)区間の消波工・根 固工があり、これらが汀線部の土砂移動を一部阻害しているとの報告がある(日本の海岸侵 食)。

表1.4 海岸保全施設一覧

	施設名	概成時期	施設諸元	
設置位置			先端設置水深	堤長 (離岸距離)
8.111	小田原漁港海岸	H11年度 (1999)	T. P6∼-7m	彩) 100m
~山王川 間	- · · · · · · · · · · · · · · · · · · ·	(1999) H14年度 (2002)	同上	(約100m)
酒匂川 ~森戸川 間	小八幡地先 突堤3基 (日本道路公団)	H8 年度 (1996)	T. P. −3m	彩 75m
押切川 ~大磯港 間	二宫漁港防波堤	H7 年度 (1995)	T. P7m	彩 120m
—	大磯港	S48年度 (1973)	約 T.P8m	彩 350m
大磯港 ~相模川 開	平塚海岸ヘッドランド	建設中	T. P4m	(約 70m)
	平塚新港	H5 年度 (1993)	T. P4m	約 200m
相模川~ 茅ヶ崎漁港間	柳島地先消波堤工	建設中	T. P4m	彩 100m
_	茅ヶ崎漁港	H 元年度 (1989)	T. P5m	彩 100m

(7) 養浜・サンドバイパスの実施状況

(1995年)~平成18年(2006年)で約22.6万m³の土砂が養浜されている。

被災地区が該当する二宮海岸は、西湘海岸において養浜量が最も投入量が多く、平成7年

図1.18 二宮海岸の養浜量

2. 参考資料2: 被災要因の分析

2-1 被災要因の分析方針

被災要因の分析フローを図2.1に示す。

図2.1 被災要因の分析フロー

2-2 波浪推算

(1) 計算手法概要

波浪の数値モデルによる推算方法は、一般的に波の空間的・時間的変化をエネルギー方 程式で記述している(波浪を方向・周波数スペクトル成分で表現)。方程式は、波浪の変化 が風からのエネルギー輸送、成分波間のエネルギーの伝達、種々のエネルギー損失とつり あっていることを表している。

これを数値計算する場合、上記の各変数を正統的に記述するスペクトル法で対象海域全 域を格子網で覆う格子点タイプと、いくつかの変数をパラメータとして簡略化するパラメ ータ法(SMB法などの有義波法もその一種)で特定の経路上での計算による経路タイプまた は1点タイプとがある。前者は広域の波浪を求められるが、係数の設定に種々のデータが必 要で計算時間が膨大になる。後者は細かな格子間の非線型相互作用を考慮できず、特定の 地点の波浪しか計算できないが、計算時間が短く簡易な利点を有する。したがって、前者 は波浪を広範囲に比較検討する場合に、後者は特定の地点の時間的変化を計算するのに適 している。

(2) 計算方法と条件

沖波の推算には、後藤・小舟(1988)によるパラメータ法の1点タイプを用いた。計算は、 下記の2通りを行った。

- ① 気象庁の波浪図におけるポイントF(北緯34°50′、東経139°30′)の波高 及び周期の時間変化との検証
- ② 西湘バイパス沖(北緯35°00′、東経139°16′)における推算
- (3) 計算結果

気象庁波浪図のポイントFとの検証結果を図2.3に示す。パラメータ1点法は台風が推算地 点から遠い場合のうねりの再現ができないことが弱点であり、ピーク時前後の波高・周期は かなりずれがあるが、ピーク時に関しては波高・周期とも概ね一致した結果が得られている。 本台風の特徴として、暴風半径は小さいものの中心気圧が低いため、波高の変化が急激でピ ークは大きいが短時間であることが挙げられる。 西湘バイパス沖における波浪推算結果を図2.4に示す。この結果、9月6日23時のピーク時 における波浪諸元は、波高:8.4m、周期:12.9s、波向:SSE である。

図2.2 気象庁波浪図との検証ポイント(F)

図2.3 波高・周期の時間変化(台風0709号)ポイントF

(4) 推算結果に基づく波浪変形計算

上記の波浪諸元を用いて、エネルギー平衡方程式法を用いて沿岸波浪の変形計算を行った。 計算結果を次頁に示す。計算は、波浪推算結果を用いたもの(ケース1)、周期を17秒にして 周期の比較的長い波浪の変形の影響をみたもの(ケース2)の2ケースを実施した。 その結果、周期の比較的長い波浪(ケース2)については、陸域に到達する波浪は近海の 地形の変化の影響を大きく受け、波の屈折により波の集中する地点が発生した。従って、周 期の長い波浪が卓越した場合、被災箇所は沿岸の中で特に大きい波浪が来襲したと推測され る。

図2.4 波高・周期の時間変化(台風0709号)西湘バイパス沖