東

京

理

科

大

学

混和材大量使用 締固めを必要とする高流動コンクリートの開発

国土交通省関東地方整備局

技術(シーズ)マッチング

研究代表者 共同研究者 東京理科大学 東急建設(株) 創域理工学部 社会基盤工学科 技術研究所 土木材料・地盤グループ 主席研究員 鈴木 将充 教授 加藤 佳孝 TOKYU CONSTRUCTION

研究開発の背景・目的

初期強度が小さいためW/Cを小さく 粉体量が増加し分離し難くなる 現状ではスランプコンとして成立 \Rightarrow

⇒ 粉体量が必要なため, 普通 N の場合, 設計基準 強度よりも大きな呼び強度(過剰設計)のコンクリー トの選択が必要

Copyright © Tokyo University of Science All Rights Reserved.

 \Rightarrow

本研究の全体像

<u>目標</u>

呼び強度24N, 27N, スランプフロー45cm対象に, 混和材を大量使用することで CO₂排出量を削減した締固めを必要とする高流動コンクリートを開発する

<u>検討課題</u>

①配合設計方法の検討(A:配合要因, B:鋼材腐食抑制方法の確立) ②実構造物を模擬した実験による施工性および硬化体品質変動の検証 ③マニュアルの整備

Contents

1. 配合設計方法の検討

A:試し練りによる配合要因の検討および基準配合の決定 B:力学的特性,寸法安定性,物質透過抵抗性の把握

2.実構造物を模擬した実験による施工性および 硬化体品質変動の検証

A:壁部材での施工性の検証および硬化体品質変動の検証 B:根固めブロックでの施工性の検証

Copyright © Tokyo University of Science All Rights Reserved

東京理科大学

配合設計方法の検討

1-A 配合要因の検討および基準配合の決定

東 京理 ¹ ・	-A	配	合要	因の	検討	およ	で基	基準西	に合の)決定	2			
	W/B	s/a			単位量	[kg/m ³]			化学涯 [(C+B	昆和剤 S)×%]			実測値	
	[%]	[%]	W	С	BS	S1	S2	G	AE	SP	実測SF [cm]	実測Air [%]	Vpass [mm/s]	δ[%] (沈下量試験)
OPC-24N	60	53.4	185	308	0	678	277	837	0.008	0.8	45.0	4.1	20	73
OPC-27N	55	53	180	327	0	676	276	837	0.008	0.8	46.5	4.8	31	67
OPC-30N	51	52	178	349	0	589	329	854	0.008	0.8	44.5	5.5	27	70
B70-24N	53	51	175	99	231	581	325	876	0.001	0.7	49.0	5.5	36	71
B70-27N	50	50	174	104	244	576	322	869	0.002	0.7	49.0	4.8	18	71
B70-30N	46	48	170	111	259	540	302	918	0.002	0.7	45.5	4.0	27	86
B80-24N	50	50	174	70	278	564	315	886	0.004	0.7	46.5	3.5	19	82
B80-27N	46	48	172	75	299	536	300	912	0.002	0.7	46.5	3.5	16	63
B80-30N	42	48	170	81	324	529	296	900	0.002	0.7	49.0	5.3	21	88

OPCと比較して, B70, B80は同一呼び強度で単位水量を5kg/m³低減

1-A 配合要因の検討および基準配合の決定

1-B 硬化特性

乾燥期間 (日)

Copyright © Tokyo University of Science All Rights Reserved.

1-B 硬化特性

Copyright © Tokyo University of Science All Rights Reserved.

東京理科大学

実構造物を模擬した実験による施工性および 硬化体品質変動の検証

<u>実構造物模擬部材</u>・・・壁:幅0.5m,長さ4m,高さ2m(4m³) <u>実験場所</u>・・・施工ヤード:東急建設(株)技術研究所(神奈川県相模原市) 施工方法・・・場内運搬:ポンプ圧送,打上がり速度:4m/h,想定施工時間:30分 <u>コンクリート配合</u>・・・呼び強度:27N(OPC, B70, B80),流動性:SF45cm ※比較として,27N-OPC-SL12cmも作製

実験前(鉄筋・型枠組立完了)の状況

Copyright © Tokyo University of Science All Rights Reserved.

東京理科大学

<u>生コンプラントでの試験結果</u>

町へ々	W/B	s/a		単	9位量	[kg/m ³	3]			実測値(3	30分経過時))
配合名	[%]	[%]	W	С	BS	S	G	Ad	SF [cm]	Air [%]	Vpass [mm/s]	δ[%]
OPC-27N	55	53	180	327	0	941	834	4.09	46.0	4.0	32.6	73
B70-27N	50	50	174	104	244	879	876	4.18	47.0	4.7	48.7	70
B80-27N	46	48	172	75	299	834	899	4.49	49.0	3.8	40.4	75

S:S1~S3の混合,G:G1とG2の混合,Ad:高性能AE減水剤標準型I種

施工の合理化

施工データより施工の合理化程度を整理(SL12cmの施工と比較)

		比較 v	s SL12	
配合	人員 (%)	打込み (%)	締固め (%)	延べ時間 (%)
SL12N	_	_	_	_
SF45N	100	61.8	50.1	48.2
SF45B70	100	52.0	49.7	46.8
SF45B80	100	53.6	39.5	42.4

※人員は施工管理, 締固め, 補助, ポンプOPの4人, 締固めはΦ40mm棒状バイブレータ1本使用 打込み・締固め時間は各単体の作業時間, 延べ時間は作業開始から終了までの時間を表す

部材あたりの数量が少ないため施工人員は変わらなかったが 施工時間は50%以上削減できることが確認できた

初期欠陥はなく、時間・労力を掛けて施工したSL12Nと同等以上の出来栄え

2-A実構造物を模擬した実験による硬化体品質変動の検証

硬化品質(均質性:試験体の超音波伝播速度(m/sec))

SL12N
TP.4426
Ave.4508
Max:4638
Min:4227
CV.1.3%

4437	4492	4492	4421 44	425 437	4 4529	4344	4500 4	.325 44	92 446	4517	4480	4464 4	4398 44	401 45	05 44	401	SF45B80	4252	4255	4318	4333 4	359 4	367 4	390 443	3 4517	4448	4433	4437 4	440 4	4398 4	386 44	56 443	7 44(05
4227	4448	4554	4452 44	180 447	6 4521	4496	4472 4	440 45	09 448	4517	4525	4488 4	4575 4	500 45	621 45	525	TP.4449	4274	4378	4363	4417 4	456 4	464 4	180 446	0 4484	4509	4492	4480 4	440 4	1409 4	429 44	56 448	0 443	33
2 4533	4472	4517	4525 44	468 450	0 4492	4456	4492 4	464 44	64 451	4529	4440	4496 4	4525 44	160 44	88 45	554	Ave.4439	4202	4259	4394	4440 4	452 4	437 4	188 449	2 4509	4513	4488	4452 4	444 4	1448 4	488 44	<u>76 451</u>	3 444	48
2 4374	4401	4505	4500 45	525 449	6 4460	4488	4409 4	456 43	94 447	4452	4409	44884	1509 44	156 44	88 45	517	Min:4202	4299	4359	4401	4398 4	413 4	448 4	554 448	4433	4496	4456	4476 4	444 4	1448 4	480 44	92 446	0 434	44
4521	4440	4505	4488 45	513 443	3 4476	4521	4437 4	505 44	48 448	4500	4492	4521 4	4533 4	525 44	80 45	550	CV.1.4%	4333	4394	4417	4394 4	417 4	401 4	140 448	4433	4484	4386	4460 4	456-4	1437 4	476 44	52 443	7 438	82
4587	4500	4575	4496 45	533 450	0 4521	4500	4429 4	517 44	96 454	4550	4484	4554 4	4521 4	521 45	617 45	537		4363	4386	4390	4425 4	460 4	437 4	148 444	0 4437	4476	4452	4476 4	405 4	1472 4	492 45	09 448	4 438	86
4566	4533	4521	4550 45	575 449	6 4545	4587	4533 4	575 45	21 456	4464	4537	4550 4	4575 4	521 45	29 45	554		4363	4437	4448	4433 4	476 4	521 4	180 448	4 4492	4505	4460	4476 4	437 4	1480 4	468 44	96 455	4 446	60
4617	4587	4513	4566 45	558 451	3 4550	4566	4476 4	521 45	00 460	4533	4513	4591 4	1554 4	554 45	i33 45	587		4255	4433	4448	4452 4	448 4	513 4	500 449	2 4448	4509	4440	4425 4	417 4	1480 4	437 44	48 450	9 443	37
4550	4625	4570	4529 45	587 457	9 4579	4579	4613 4	554 46	38 449	4625	4587	4613 4	1600 4	575 46	13 45	541		4437	4464	4417	4492 4	472 4	429 4	562 460	4 4417	4480	4386	4468 4	488 4	1496 4	464 44	80 454	1 455	58

Max:4545

Min:4191

CV.1.5%

S Max:4517 Min:4174 CV.1.5%

4252	4374	4333	4433	4433	4409	4440	4413	4386	4333	4344	4371	4374	4296	4284	4255	4325	4227	419
4318	4371	4417	4413	4398	4417	4390	4382	4409	4348	4359	4440	4433	4386	4322	4266	4244	4198	417
4296	4340	4299	4288	4401	4363	4394	4409	4314	4314	4340	4325	4371	4325	4413	4322	4252	4209	421
4259	4337	4252	4333	4382	4390	4413	4440	4325	4433	4448	4344	4322	4299	4409	4421	4244	4252	43
4355	4355	4318	4371	4437	4398	4401	4413	4352	4433	4371	4378	4378	4363	4433	4382	4318	4241	43
4417	4448	4310	4348	4382	4333	4363	4401	4413	4417	4352	4413	4401	4348	4394	4378	4363	4299	43
4480	4394	4433	4425	4405	4363	4409	4480	4425	4401	4333	4409	4448	4401	4371	4386	4440	4374	43
4460	4386	4460	4468	4448	4433	4429	4437	4444	4417	4340	4394	4401	4452	4374	4437	4448	4307	43
4374	4517	4488	4394	4421	4429	4452	4460	4409	4355	4476	4444	4405	4310	4433	4425	4440	4413	42

0	4318	4437	4426	4437	4405	4398	4382	4398	4333	4401	4386	4348	4299	4329	4325	4325	4212	4216	4191
	4355	4444	4488	4452	4444	4468	4456	4448	4413	4456	4417	4413	4367	4409	4378	4390	4355	4333	4202
	4348	4405	4437	4425	4374	4440	4480	4472	4371	4425	4378	4401	4413	4288	4296	4337	4340	4274	4195
	4307	4394	4480	4348	4378	4401	4440	4452	4348	4448	4378	4367	4374	4340	4322	4348	4299	4244	4205
	4303	4394	4421	4398	4417	4405	4401	4456	4452	4433	4417	4452	4417	4401	4464	4472	4394	4359	4296
	4314	4382	4405	4371	4333	4437	4425	4409	4405	4371	4314	4348	4325	4325	4296	4386	4337	4401	4425
	4355	4417	4476	4444	4439	4359	4398	4421	4405	4325	4337	4337	4325	4359	4318	4333	4322	4394	4378
	4545	4452	4460	4492	4443	4405	4382	4480	4398	4374	4433	4382	4329	4299	4299	4340	4274	4325	4333
	4421	4488	4464	4413	4405	4444	4460	4444	4480	4363	4496	4433	4352	4413	4452	4476	4492	4468	4433

MIN:4000

超音波伝播速度で判定されるコンクリートの品質「良」、ばらつきは小さい

Copyright © Tokyo University of Science All Rights Reserved.

MAX:4800

MID:4400

2-A実構造物を模擬した実験による硬化体品質変動の検証

<u>硬化品質(試験体の表層透気係数(10-16m²))</u>

0.068

0.045

0.441	0.049	TP.0.067 Ave 0.021	0.001	0.001	0.005	
0.104	0.127	Max:0.099 Min:0.001	0.022	0.016	0.011	
0.134	0.036	CV.112.3%	0.013	0.016	0.028	
0.169	0.040		0.017	0.015	0.022	

SF45B80

45B70 0.200		0.094	
x:0.207 x:0.408 1:0.094		0.178	
50.4%		0.408	
		0.388	

MIN:0001

MAX:1 0

0.003

0.066

0.006

0.045

0.008

表層透気係数で判定されるコンクリートの品質「良」~「一般」,各コンクリート種類でばらつき小

SL12N

TP.0.051 Ave.0.111 Max:0.441

Min:0.024 CV.82.9% 0.024

0.101

2-A実構造物を模擬した実験による硬化体品質変動の検証

硬化品質(力学的特性:コア供試体の圧縮強度,静弾性係数)

自己充填性を有する高流動コンクリートと同程度の強度の変動

<u>技術ニーズ</u> 「GXの取組として,環境負荷軽減の材料にて根固めブロックの製作・備蓄」 →根固めブロックを対象とした実大規模による施工性の検証,施工コスト, CO₂排出量・吸収量の試算について検討実施

・・・施工実験で製作した部材はCO2吸収量の評価のため暴露試験予定

<u>コンクリート配合</u> 呼び強度:27N(B80),流動性:SF45cm ※比較として,24-N-SL8cmも作製

<u>施工方法</u> トラックアジテータのシュート, 締固めの有無

施工性の確認方法

施工時:フレッシュ性状,施工時間(打込み,締固め),充填状況,施工者の活動量 脱型後:出来栄え,力学的特性,物質移動抵抗性,CO2吸収量(今後,測定)

実験状況

東京理科大学

施工の合理化

施工データより施工の合理化程度を整理(SL8cmの施工と比較)

			比較 vs SL8	
配合	締固め	打込み (%)	締固め (%)	延べ時間 (%)
SL8N	±1)	-	-	_
SF45B80	月り	87.6	13.9	48.0
SF45B80	無し	66.4	-	33.2

※人員は施工管理,締固め,補助の4人,締固めはΦ40mm棒状バイブレータ1本使用 打込み・締固め時間は各単体の作業時間,延べ時間は作業開始から終了までの時間(蓋設置を除く)を表す

壁部材と同様に 施工時間は50%以上削減できることが確認できた

<u>施工の合理化</u> 締固めを行わないケースでは豆板が発生

施工時の見た目では充填しているようにみえたが、軽微な締固めは重要!

23

2-B実構造物を模擬した実験による硬化品質変動の検証

<u>CO₂排出量・吸収量</u> 根固めブロックへの適用によりCO₂排出量を製造時で51%削減

壁部材の結果から,中性化進行を仮定

根固めブロックは表面積が大きいので 中性化するコンクリートの容積が大きい

約55mmの中性化進行(約76年)で カーボンニュートラル

⇒備蓄期間中に環境貢献が可能

これまでの成果のまとめ

混和材大量使用締固めを必要とする高流動コンクリートについて,

普通ポルトランドセメントを使用したコンクリートと比較して、

- ・圧縮強度,静弾性係数は同等程度
- ・水分浸透抵抗性や遮塩性は大幅に向上
- ・中性化に対する抵抗性は低い,長さ変化も長期的には少し大きい 上記を考慮して,鋼材腐食抑制方法を検討する必要がある

実大施工実験の結果より,開発コンクリートの施工性と硬化品質は,

- ・壁,根固めBLともに施工時間を50%以上削減できる
- ・壁の出来栄えや硬化品質は同等以上

東京理科大学

構築コスト, CO2コストの試算

Masamitsu Suzuki, Yoshitaka Kato:

Case Study on the Effect of Mechanically-compacting Flowable Concrete with Low CO2 Emission on Productivity, Economic Efficiency, and Environmental Impact,

Journal of Advanced Concrete Technology,

22巻9号 p. 576-587, 2024.9

DOI https://doi.org/10.3151/jact.22.576

東京理科大学

構造物に適用した際の施工性,構築コスト,CO2排出量の試算

構造物	部材	コンクリート 数量 (m ³)	設計 基準強度 (N/mm²)	SL (cm)	かぶり (mm)
送败场	底版	148	24		00
但哈侗 下如丁	柱	39	20	8	00
	梁	57	30		45

<u>検討ケース</u> 基準となるSL8-Nと同等の硬化体品質を 有するように水粉体比を設定

- SF45-B70
- SF45-B80

SF45の施工性は, 2-Aの結果を活用

構造物に適用した際の施工性,構築コスト,CO2排出量の試算

<u>構築コストとCO2排出量</u>

<u>構成割合</u> 材料:84.5~86.8% 施工:13.2~15.5%

Copyright © Tokyo University of Science All Rights Reserved.

東京理科大学

構造物に適用した際の施工性,構築コスト,CO2排出量の試算

1ドル=154.63円(2024.11.07) CO₂価格 IMF:75ドル IPCC:社会的割引率5%を考慮した2020年の平均価格は460ドル程度 18 15 15.5(百万円) 13.0 12.9 12 9.8 10.0 9.7 9 ⊥ 6 К Π 3 0 SL8N-鉄筋 SF45B70-鉄筋 SF45B80-鉄筋

■材料コスト ■施工コスト ■Min ■Max

ご清聴ありがとうございました

