資料3-2-2

(事後評価)

関東地方整備局 事業評価監視委員会 (平成24年度第8回)

横浜港南本牧ふ頭地区 国際海上コンテナターミナル整備事業

平成25年1月31日 国土交通省 関東地方整備局

横浜港南本牧ふ頭地区国際海上コンテナターミナル整備事業(MC-1, MC-2) 費用便益分析シート(割引前)

費用便益分析シート(割引後)

EIRR= 13.7%

NPV= 13,809 億円

													B/C=	5.0		191- ¥-	13,503 [5]			
								3	(億円)										C	億円〉
	5=			en an co	害 引	前 ターミナル 新設	ên Fi	- 34	A+ 7= 34			41.032			AN # ITT	害 引 引 海外トランシップ タ	後 ターミナル新設	des t	- 26	A+7=34
年度	施設供用期間	初期投資· 更新投資	運営・維持 コスト	総費用 (C)	回避による輸送コースト増大回避	による輸送コス 列 ト増大回避	終任 終存価値 (B		純便益 (B-C)	年度	施設供用期間	社会的 割引率	初期投資· 更新投資	運営・維持 コスト	総費用 (C)	回避による輸送コロ		価値 総信 (E		純便益 (B-C)
1989		14.5		1 4.5					-14.5	1989		2.46	35.7		35.7		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			-35.7
1990 1991		165.7 139.5		165.7 139.5					-1 65.7 -1 39.5	1990		2.37 2.28	392.8 317.9		392.8 317.9					-392.8 -317.9
1992		106.4		106.4					-106.4	1992		2.19			233.1					-233.1
1993		171.4		171.4					-171.4	1993		2.11	361.0		361.0					-361.0
1994		135.5		135.5					-135.5	1994		2.03	274.4		274.4					-274.4
1995 1996		133.2		133.2 196.3					-133.2 -196.3	1995		1.95 1.87	259.4 367.7		259.4 367.7					-259.4 -367.7
1997		137.6		137.6					-137.6	1997		1.80			247.8					-247.8
1998		184.2		184.2					-184.2	1998		1.73			319.0					-319.0
1999		183.8		183.8					-183.8	1999		1.67	306.1		306.1					-306.1
2000		115.5 4.9	0.02	115.5	87.1	188.4	2	75.5	-115.5 270.6	2000 2001	- 1	1.60 1.54	184.9 7.6	0.03	184.9 7.6	134.0	290.1		424.1	-184.9 416.5
2002	2	1.0	0.02	1.0	115.8	306.0		21.8	420.8	2002	2		1.5	0.03	1.5	171.4	453.0		624.3	622.8
2003	3	13.5	0.02	13.5	115.6	264.1	3	79.7	366.2	2003	3	1.42	19.2	0.03	19.2	164.5	375.9		540.5	521.2
2004	4	13.1	0.02	13.2	134.5	215.1		19.5	336.4	2004	4		18.0	0.03	18.0	184.0	294.3		478.4	460.4
2005 2006	5 6	14.8	0.02 0.02	14.8	164.7 164.7	388.4 250.3		53.1 15.0	538.3 403.9	2005 2006	5 6		19.5 14.1	0.03	19.5 14.1	216.8 208.4	511.1 316.7		727.9 525.1	708.4 511.0
2007	7	17.4	0.02	17.4	150.6	717.8		58.4	851.0	2007	7			0.02	21.2	183.2	873.3		056.5	1,035.3
2008	8		0.02	0.0	165.4	584.9		50.3	750.3	2008	8			0.02	0.0	193.5	684.3		877.7	877.7
2009	9	9.7	0.02	9.7	112.3	347.1		59.5	449.8	2009	9			0.02	10.9	126.4	390.4		516.8	505.9
2010	10		0.02	0.0	169.2	375.3		44.5	544.5	2010	10			0.02	0.0	183.0	405.9		588.9	588.9
2011	11 12	4.9	0.02 0.02	4.9 0.0	97.9 111.2	491.0 561.7		88.9 72.9	584.0 672.9	2011	11 12	1.04		0.02	5.1 0.0	101.8 111.2	51 0.7 56 1.7		612.4 672.9	607.3 672.9
2012	13		0.02	0.0	147.6	418.5		66.1	566.1	2012	13			0.02	0.0	141.9	402.4		544.3	544.3
2014	14		0.02	0.0	124.3	367.4		91.7	491.6	2014	14			0.02	0.0	114.9	339.7		454.6	454.6
2015	15		0.02	0.0	124.3	367.4		91.7	491.6	2015	15	0.89		0.02	0.0	110.5	326.6		437.1	437.1
2016	16		0.02	0.0	124.3	367.4		91.7	491.6	2016	16			0.02	0.0	106.3	31 4.0		420.3	420.3
2017	17		0.02	0.0	124.3	367.4		91.7	491.6	2017	17	0.82		0.02	0.0	102.2	301.9		404.1	404.1
2018 2019	18 19	48.8	0.02 0.02	48.8 0.0	124.3 124.3	367.4 367.4		91.7 91.7	442.9 491.6	2018 2019	18 19			0.02	38.6 0.0	98.2 94.5	290.3 279.2		388.6 373.6	350.0 373.6
2020	20		0.02	0.0	124.3	367.4		91.7	491.6	2020	20			0.01	0.0	90.8	268.4		359.3	359.2
2021	21	4.9	0.02	4.9	124.3	367.4		91.7	486.7	2021	21	0.70		0.01	3.5	87.3	258.1		345.4	342.0
2022	22		0.02	0.0	124.3	367.4	4	91.7	491.6	2022	22			0.01	0.0	84.0	248.2		332.2	332.1
2023	23		0.02	0.0	124.3	367.4		91.7	491.6	2023	23			0.01	0.0	80.7	238.6		319.4	319.4
2024	24		0.02	0.0	124.3	367.4		91.7	491.6	2024	24			0.01	0.0	77.6	229.5		307.1	307.1
2025 2026	25 26	9.5	0.02 0.02	0.0 9.5	124.3 124.3	367.4 367.4		91.7 91.7	491.6 482.1	2025 2026	25 26			0.01	0.0 5.5	74.7 71.8	220.6 212.1		295.3 283.9	295.3 278.4
2027	27	3.5	0.02	0.0	124.3	367.4		91.7	491.6	2027	27	0.56		0.01	0.0	69.0	204.0		273.0	273.0
2028	28		0.02	0.0	124.3	367.4		91.7	491.6	2028	28			0.01	0.0	66.4	196.1		262.5	262.5
2029	29		0.02	0.0	124.3	367.4		91.7	491.6	2029	29	0.51		0.01	0.0	63.8	188.6		252.4	252.4
2030	30		0.02	0.0	124.3	367.4		91.7	491.6	2030	30			0.01	0.0	61.4	181.3		242.7	242.7
2031	31 32	4.9	0.02 0.02	4.9 0.0	124.3 124.3	367.4 367.4		91.7 91.7	486.7 491.6	2031	31 32	0.47 0.46	2.3	0.01	2.3 0.0	59.0 56.7	174.4 167.7		233.4 224.4	231.0 224.4
2033	33		0.02	0.0	124.3	367.4		91.7	491.6	2033	33			0.01	0.0	54.5	161.2		215.8	215.8
2034	34		0.02	0.0	124.3	367.4		91.7	491.6	2034	34	0.42		0.01	0.0	52.4	155.0		207.5	207.5
2035	35	48.8	0.02	48.8	124.3	367.4	4	91.7	442.9	2035	35	0.41	19.8	0.01	19.8	50.4	149.1		199.5	179.7
2036	36		0.02	0.0	124.3	367.4		91.7	491.6	2036	36	0.39		0.01	0.0	48.5	143.3		191.8	191.8
2037	37		0.02	0.0	124.3	367.4		91.7	491.6	2037	37	0.38		0.01	0.0	46.6	137.8		184.4	184.4
2038 2039	38 39		0.02 0.02	0.0	124.3 124.3	367.4 367.4		91.7 91.7	491.6 491.6	2038 2039	38 39			0.01	0.0 0.0	44.8 43.1	132.5 127.4		177.3 170.5	177.3 170.5
2040	40		0.02	0.0	124.3	367.4		91.7	491.6	2040	40			0.01	0.0	41.5	122.5		164.0	164.0
2041	41	4.9	0.02	4.9	124.3	367.4		91.7	486.7	2041	41	0.32		0.01	1.6	39.9	117.8		157.7	156.1
2042	42		0.02	0.0	124.3	367.4	4	91.7	491.6	2042	42	0.31		0.01	0.0	38.3	113.3		151.6	151.6
2043	43	9.5	0.02	9.5	124.3	367.4		91.7	482.1	2043	43			0.01	2.8	36.9	108.9		145.8	142.9
2044	44		0.02	0.0	124.3	367.4		91.7	491.6	2044	44			0.01	0.0	35.4	104.7		140.2	140.1
2045 2046	45 46		0.02 0.02	0.0	124.3 124.3	367.4 367.4		91.7 91.7	491.6 491.6	2045 2046	45 46			0.01	0.0	34.1 32.8	100.7 96.8		134.8 129.6	134.8 129.6
2047	47		0.02	0.0	124.3	367.4		91.7	491.6	2047	47	0.25		0.00	0.0	31.5	93.1		124.6	124.6
2048	48		0.02	0.0	124.3	367.4		91.7	491.6	2048	48	0.24		0.00	0.0	30.3	89.5		119.8	119.8
2049	49		0.02	0.0	124.3	367.4		91.7	491.6	2049	49			0.00	0.0	29.1	86.1		115.2	115.2
2050	<u>50</u>	1.00F 1	0.02	0.0	124.3	367.4 18,701.3		32.0	762.0	2050	<u>50</u>	0.23		0.00	0.0	28.0 4408.0	82.8		171.7	171.7
合_	a f	1,905.4	1.0	1,906.3	6,335.7	18,701.3	270.4 25,3	113	23,400.9	合	вT		3490.9	0.7	3491.6	4408.0	12831.8	60.9 17	300.7	13809.1

[背後圏及び代替港の設定(欧州・地中海航路以外)]

本プロジェクトが実施されなかった場合には、横浜港内の他の施設では取扱能力の制約により対象貨物を取扱うことができない。without 時の代替港の選定条件と結果を以下に示す。なお、仙台塩釜港及び常陸那珂港は H23 年 3 月に発生した東日本大震災で被災したため、現在利用不可能の状態にある。復旧期間を 2 年と想定し、H23 年及び H24 年は仙台塩釜港及び常陸那珂港を代替港から除外した。

なお、千葉港は同一港内と見なすため、それらの港湾が代替港となる貨物は便益対象外とする。 また、輸出入別の実入りコンテナ貨物量は MC-1・MC-2 における実入り率実績から設定する。

表 各年次における代替港の選択結果(欧州・地中海航路以外)

<代替港の選定条件>

- ①代替港に当該航路が就航していること
- ②代替港に受入余力があること

												H23•		H26
航路	代替港	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H24	H25	以陷
	仙台塩釜港	0	0	0	0	0	0	0	0	0	0		0	0
	清水港			0	0	0	0	0	0	0	0			
北米西岸航路	名古屋港	0				0			0	0	0	0	0	0
	大阪港	0	0				0	0	0					
	神戸港							0						
北米東岸航路	名古屋港	0	0	0	0	0	0	0	0	0	0	0	0	0
10 个 不 广 川 山	大阪港		0	0	0		0	0						
南米航路	名古屋港	0	0	0	0	0	0	0	0	0	0	0	0	0
	名古屋港	0				0				0	0	0	0	0
豪州航路	大阪港		0	0	0		0							
	神戸港							0	0					
	名古屋港	0				0				0	0	0	0	0
印パ航路	大阪港		0	0	0		0							
	神戸港							0	0					
	仙台塩釜港		0	0	0	0	0	0	0	0	0		0	0
東南アジア航路	名古屋港					0				0	0	0	0	0
木田ノンノル山口	大阪港		0	0	0		0							
	神戸港							0	0					
	常陸那珂港		0	0	0	0	0	0	0	0	0		0	0
中国航路	三河港							0	0		0	0	0	0
	名古屋港			0		0								
	大阪港	0	0		0		0							
その他航路	名古屋港	0	0								0			

[背後圏及び代替港の設定(欧州・地中海航路)]

本プロジェクトが実施されなかった場合には、国内から一部基幹航路(欧州・地中海航路の貨物)が抜港されてしまうものとし、without 時には荷主は海外トランシップ港を経由した非効率な輸送を選択せざるを得ないものとする。

海外トランシップ港は、水深-16mを超える岸壁(釜山新港)を有する、日本から最短の港湾である釜山港とし、釜山港からフィーダー船で仙台塩釜港、常陸那珂港、千葉港、清水港、名古屋港のいずれかに輸送されるものとした。なお、中枢国際港湾については、地域内の港湾をまとめて1つの港湾とみなすため、千葉港にフィーダー輸送される貨物の陸上輸送コスト削減便益は計上しない。

なお、輸出入別の実入りコンテナ貨物量は南本牧ふ頭における空コン率実績値から設定する。 (H24 以降は H23 実績値とする)

表 各年次における代替港の選択結果(欧州・地中海航路)

<代替港の選定条件>

- ①代替港に韓国航路が就航していること
- ②代替港に受入余力があること

\downarrow
\downarrow

<f< th=""><th>弋替港の選</th><th>定結果></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></f<>	弋替港の選	定結果>													
	航路	代替港	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23 • H24	H25	H26 以降
		仙台塩釜港	0	0	0	0	0	0	0	0	0	0		0	0
		常陸那珂港	0	0	0	0	0	0	0	0	0	0		0	0
区欠少	州·地中海航 路	千葉港	0	0	0	0	0	0	0	0	0	0			
	ΨЦ	清水港			0	0						0	0	0	0
		名古屋港											0		

[ターミナル新設による輸送コストの削減]

対象プロジェクトの実施により、荷主は近傍の横浜港が利用できるようになり、整備しない場合に想定される他港利用に比べて、輸送コストが縮減される。

計算の結果、便益は以下に示すように年間381.3億円となる。

		With 時	Without 時	備考
1	便益対象貨物量(千 TEU/年) (実入り)	25. 2	25. 2	
2	陸上輸送費用(億円/年)	149. 7	512. 6	(代替港)
3	海上輸送費用(億円/年)	171. 5	171.6	仙台塩釜港、茨城港常陸那
4	輸送時間費用(億円/年)	1, 300. 7	1, 319. 0	珂港区、名古屋港等
便益	左合計(億円/年)	381	1.3	

【陸上輸送費用削減便益】

項目			With時		Without時				
貨物取扱量	(TEU/年)	252,467			252,467				
貝彻以放重	(個/年)	168,307			168,307				
使用台数(台/年)			168,307	,	168,307				
陸上輸送距離(km)		8	~	407	125	~	709		
陸上輸送費用原単位(円/	/台)	25,050	~	324,520	77,700	~	456,160		
陸上輸送費用(億円/年)		149.7		512.6					
陸上輸送費用削減便益(億	362.9								

【海上輸送費用削減便益】

内上"预定头/1/11/60人业 》								
項目			With時		Without時			
化热取机量	(TEU/年)	252,467			252,467			
貨物取扱量	(個/年)		168,307	7		7		
船型(TEU型)	2,000	~	8,000	2,000	~	8,000		
海上輸送距離(シーマイル	.)	1,041	~	12,240	896	~	12,120	
海上輸送時間(日)		2.08	~	21.34	1.79	~	21.13	
海上輸送費用原単位(円/	22,672	~	193,881	20,309	~	192,027		
海上輸送費用(億円/年)		171.5		171.6				
海上輸送費用削減便益(億			0.	.1				

【輸送時間費用削減便益】

項目			With時		V	Vithout	時
貨物取扱量	(TEU/年)	252,467			252,467		
貝彻以放里	(個/年)		168,30	7	168,307		
陸上輸送距離(km)		8	~	407	125	~	709
陸上輸送時間(時間)	陸上輸送時間(時間)			6	2	~	10
陸上輸送時間費用原単位	(円/個)	0	~	18,810	1,200	~	32,571
海上輸送距離(シーマイル)	1,041	~	12,240	896	~	12,120
海上輸送時間(日)		2.08	~	21.34	1.79	~	21.13
海上輸送時間費用原単位	59,904	~	1,690,128	51,552	~	1,673,496	
輸送時間費用(億円/年)	1,300.7 1,319.0)	
海上輸送費用削減便益(億	18.3					•	

[海外トランシップ回避による輸送コストの削減]

対象プロジェクトの実施により、荷主は、近傍の横浜港が利用できるようになり、整備しない 場合に想定される海外トランシップ輸送に比べて、輸送コストが縮減される。

計算の結果、便益は以下に示すように年間129.0億円となる。

		With 時	Without 時	備考
1	便益対象貨物量(千 TEU/年) (実入り)	11. 3	11. 3	
2	海上輸送費用(億円/年)	90. 1	120. 7	(代替港) 仙台塩釜港、茨城港常陸那
3	輸送時間費用(億円/年)	869. 5	967. 9	珂港区、清水港
便益	A 合計(億円/年)	129	9. 0	

【海上輸送費用削減便益】

項目	項目				Without時			
华加亚亚星	(TEU/年)		113,311	l	113,311			
貨物取扱量	(個/年)		73,319		73,319			
船型(TEU型)	船型(TEU型)			8,000	1,000	~	12,000	
海上輸送時間(日)		18.93	~	19.71	19.55	~	20.22	
海上輸送費用原単位(円/	/個)	96,574	~	166,415	126,299	~	199,588	
海上輸送費用(億円/年)		90.1		120.7				
海上輸送費用削減便益(係			30).6				

【輸送時間費用削減便益】

項目	項目				Without時			
貨物取扱量	(TEU/年)	113,311			113,311			
貝彻以放里	(個/年)	73,319			73,319			
海上輸送距離(シーマイル)			~				
海上輸送時間(日)		18.93	~	19.71	19.55	~	20.22	
海上輸送時間費用原単位	(円/個)	863,208	~	1,561,032	937,080	~	1,680,624	
輸送時間費用(億円/年)	869.5			967.9				
海上輸送費用削減便益(億	98.4							

〔残存価値〕

本プロジェクトにおいて残存価値を計上できる施設はふ頭用地および荷役機械であり、その残存価値は、270.4億円となる。

① ふ頭用地の面積 (m²)	350, 000	
② 土地単価 (円/m2)	78, 900	都道府県地価調査(中 9-1) H23.7.1
ふ頭用地の残存価値(億円)	276. 2	①×②
荷役機械の残存価値 (億円)	7. 7	
残存価値 合計(億円)	283. 9	税込み
7天1十1川11世 百司(1息日)	270. 4	税抜き