第33回 東京外環トンネル施工等検討委員会

再発防止対策及び地域の安全・安心を高める取り組みを踏まえた工事の状況等について < 大 泉 側 本 線 (北 行) シ ー ル ド ト ン ネ ル >

令和 7年 11月 20日

国土交通省 関東地方整備局 東京外かく環状国道事務所 東日本高速道路株式会社関東支社 東京外環工事事務所 中日本高速道路株式会社東京支社 東京工事事務所

目 次

1.	工事の進捗が	犬況・・・・・・・・・・・・・・・・・・・・・・・・・・1
2.	再発防止対策 2. 1 2. 2 2. 3 2. 4 2. 5	版を踏まえた工事の対応状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	地域の安全・ 3.1 3.2 3.3	安心を高める取り組みの対応状況・・・・・・・・・・・・・・・・23振動・騒音対策・・・・・・・・・・・・・・24~26 地表面変状の確認・・・・・・・・・・・・・・・・・・・・・・・31~34 地域住民の方への情報提供・・・・・・・・・・・・・・・・・31~34

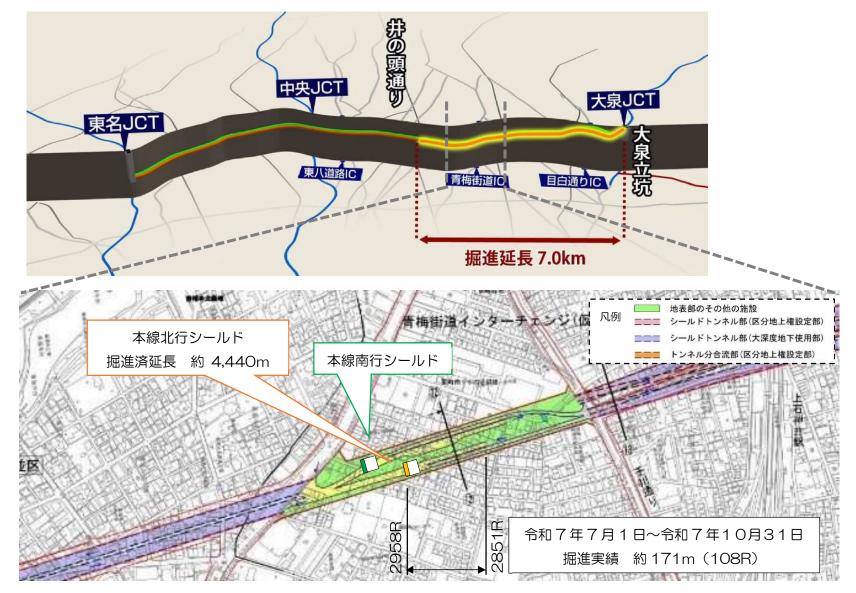
1 工事の進捗状況

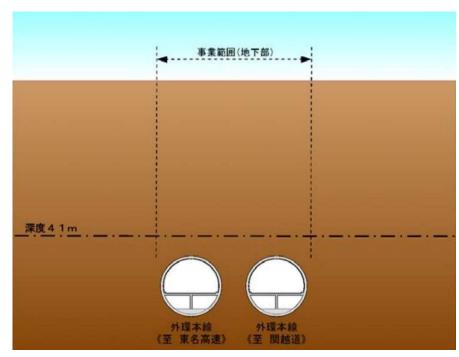
1.1 工事の進捗状況

1.1.1 大泉側本線(北行)シールドトンネル工事の概要

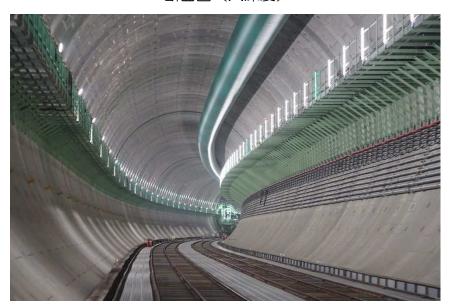
工事名称 : 東京外かく環状道路 本線トンネル(北行)大泉南工事

発注者 : 中日本高速道路(株) 東京支社


施工者・大成・安藤・間・五洋・飛島・大豊特定建設工事共同企業体


工事内容 : 泥土圧シールド(シールド機外径 ϕ 16.1m、セグメント外径 ϕ 15.8m) 【北行】延長 約 6,970m

工事箇所 : 東京都武蔵野市吉祥寺南町~練馬区大泉町


1.1.2 工事の進捗状況(令和7年10月31日現在)

大泉側本線(北行)シールドトンネル工事は、令和7年7月1日から令和7年10月31日の間にセグメント2851リング (以下、R)から2958Rの約171mの掘進作業を行い、掘進済延長は約4,440mとなった。また、9月16日から11月5日 の間に掘進を一時停止して坑内土砂搬送設備(ベルトコンベヤー)の段取替え作業を実施し、併せてスクリューコンベヤーの 部材更新を実施した。なお、2850Rまでは第32回委員会までに報告済みである。

断面図(大深度)

本線北行坑内

本線北行坑内

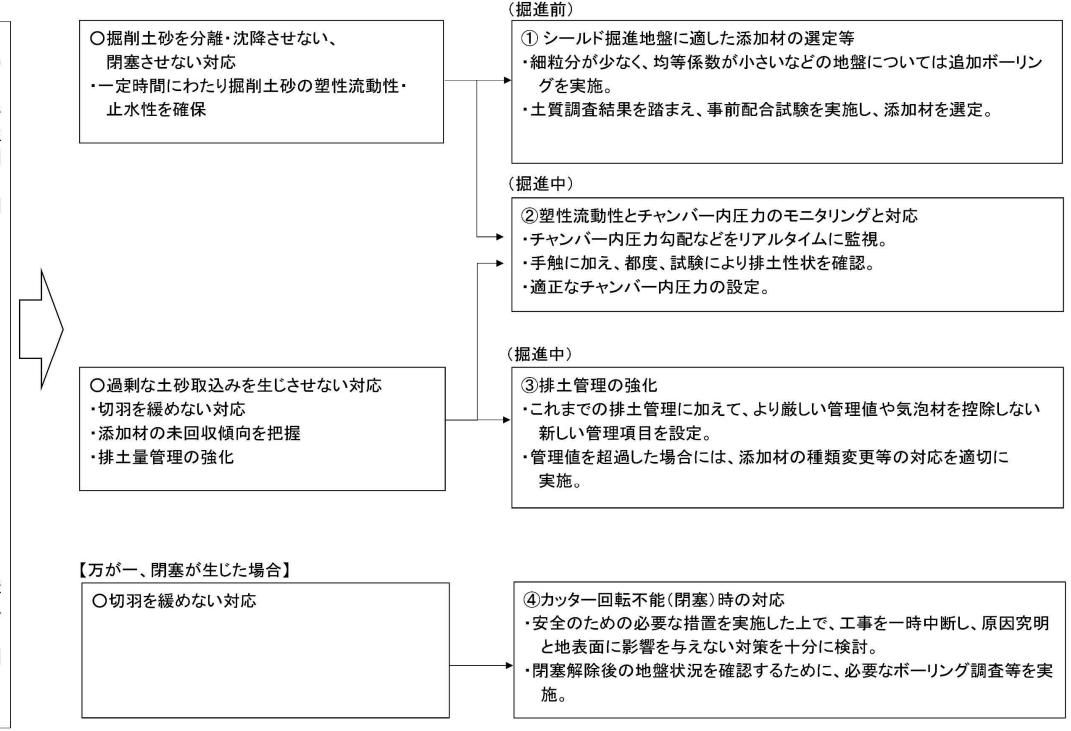
2 再発防止対策を踏まえた工事の対応状況

第23回東京外環トンネル施工等検討委員会で、次の陥没・空洞の推定メカニズムを踏まえた再発防止対策を確認した。

掘進作業にあたっては、再発防止対策が機能していることを丁寧に確認し、施工状況や周辺環境をモニタリングしながら細心の注意を払い慎重に進めた。

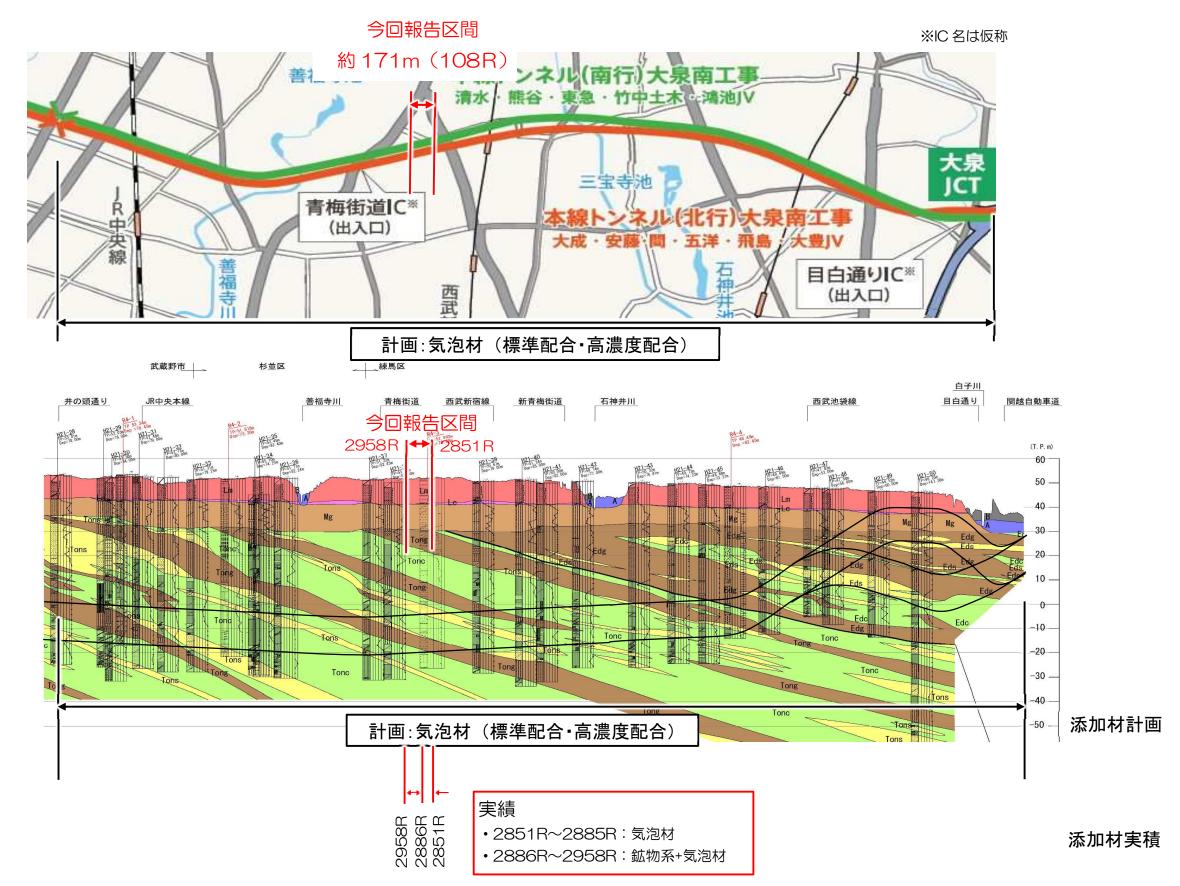
陥没・空洞の推定メカニズムを踏まえたトンネル再発防止対策

陥没・空洞の推定メカニズムを踏まえた、東京外環事業における今後のシールドトンネル施工を安全に行うための再発防止対策は以下のとおりである。空洞・陥没が発生したことでシールドトンネル工事に起因した 陥没等に対する懸念や、振動・騒音等に対する不安の声等が多く寄せられていることを受け、地盤変状の監視強化や振動計測箇所の追加、振動・騒音対策の強化など、「地域の安全・安心を高める取り組み」を加え、 再発防止対策として実施していくこととする。


■陥没・空洞の推定メカニズムを踏まえたトンネル再発防止対策

○推定メカニズム 〈閉塞及び閉塞を解除するための 作業〉

- ・ 礫が卓越し、細粒分が少ない 地盤では塑性流動性・止水性 の確保が難しく、夜間休止時間 にチャンバー内の土砂が分離・ 沈降し、締固まってしまい閉 寒。
- ・その閉塞解除のために、土砂を一部排出し、直ちに排出土砂分の起泡溶液と置き換える特別な作業を行う過程で、土圧の均衡がとれず。
- ・地山から土砂がチャンバー内 に流入。
- ・地山に緩みが発生。

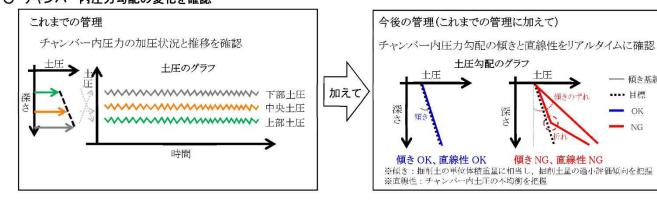

〈閉塞解除後の掘進〉

- ・掘削土の塑性流動性を保つため、通常より多くの気泡材を 注入。
- ・閉塞を解除するための作業により緩んだ地山に気泡材が浸透し、一部が回収されず、掘削した地山重量を過小に評価され、土砂の取り込みが想定より過剰に生じた。
- ・地山の緩みが拡大。

2.1. 添加材使用基本計画図

大泉側本線(北行)シールドトンネル工事は、再発防止対策のシールド掘進地盤に適した添加材の選定等の結果を踏まえ、添加材は気泡材、鉱物系を適切に使用した。2886R 以降の掘進においては、カッタートルクの上昇傾向が確認されたため、各種掘進管理データのモニタリングや排土性状を確認し、添加材に鉱物系を追加した。

2.2 塑性流動性とチャンバー内圧力のモニタリングと対応


2.2.1 第23回東京外環トンネル施工等検討委員会で確認された再発防止対策

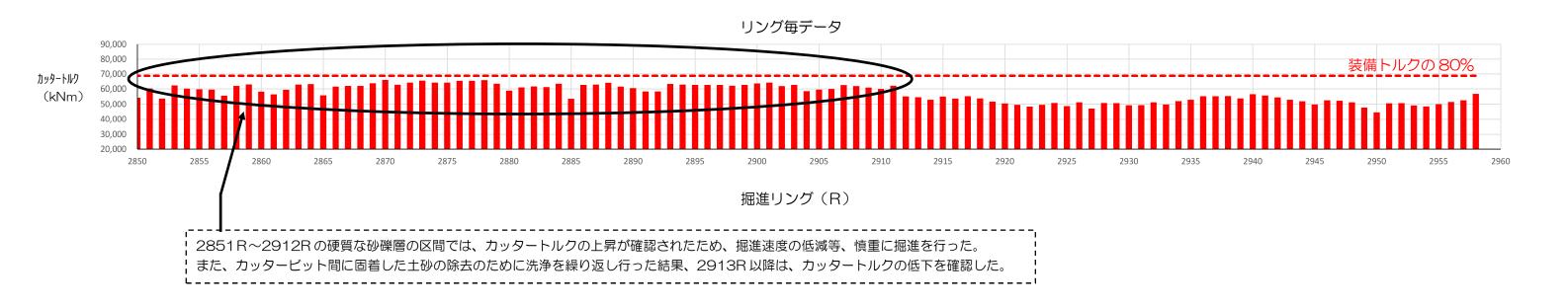
- ・これまでの塑性流動性の確認項目に加え、新たにチャンバー内の圧力勾配、ミニスランプ、粒度分布での確認を行うこととする。
- ・塑性流動性のモニタリングをしながら、添加材注入量や添加材の種類を適切に調整し、塑性流動性・止水性の確保を行う。なお、塑性流動性の確保が困難となる兆候が確認された場合は原因の解明と対策を 検討する。

掘進データからの塑性流動性確認方法

管理項目	管理内容	管理値·確認内容	対応	備考
カッタートルク	カッターヘッドを回転させるために必要なトルク値であり、地盤状況ごとの想定トルク値および装備能力に対して計測トルクの割合と計測トルクの変動についても確認を行う(確認頻度_リアルタイム)		・掘進速度の低減(カッタートルク対応) ・チャンバー内圧力設定の見直し ・添加材注入量の増加	
チャンバー内圧力勾配	チャンバー内圧力勾配の変化を確認する (確認頻度_リアルタイム、毎リング管理)	圧力勾配の傾きと直線性を確認する ・下限圧力と上限圧力との間で掘進時のチャンバー内圧力を管理することで、切羽の安定を常時管理する ・事前のボーリングデータと添加材注入率等から算出される理論圧力勾配との差を確認する ・下部チャンバー内圧力が大きくなるなどの異常が無いことを確認・掘進中および停止中は監視モニターでリアルタイムに確認する	・ベントナイト溶液を含めた添加材の種類変更 ・夜間等掘進休止時において、チャンバー内土砂の分離を防ぐため、定期的にチャンバー内土砂の撹拌を実施	傾きが想定以上に大きい場合は、気泡 材の地山への過度な浸透が生じている 可能性 傾きが小さい場合や直線性が損なわれ ている場合は、土砂の分離・沈降が生じ ている可能性
手触 目視	掘削土のまとまり具合を手触と目視で確認する 確認頻度(目視:リアルタイム、手触:2回/日)	添加材の添加量や種類、濃度変更による掘削土の排土性状の変化を確認する 例)気泡材注入量増加に見合う湿潤状態など		掘削土には高分子材が添加
ミニスランプ試験	掘削土のスランプ値を計測し、値と変化を傾向管理する (確認頻度_2 回/日)	直近の掘削土の性状と比較する		掘削土には高分子材が添加
粒度分布	掘削地山の土層を把握するために試験室にて粒度分布試験を実施し添加材の注入率設定のデータとする (確認頻度_20 リングに 1 回を基本とし、塑性流動性のモニタリングに応じて適宜実施)			細粒分や礫分の比率など地層の変化を 確認

〇 チャンバー内圧力勾配の変化を確認

〇 排土性状の確認



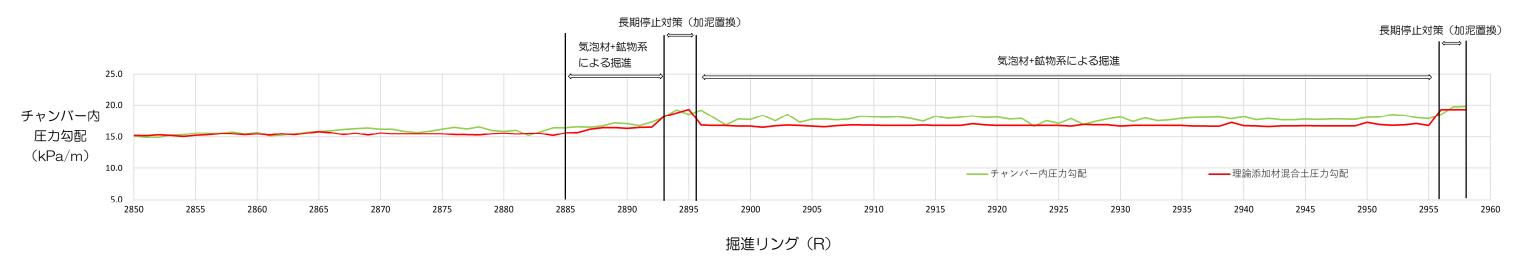
- 傾き基線

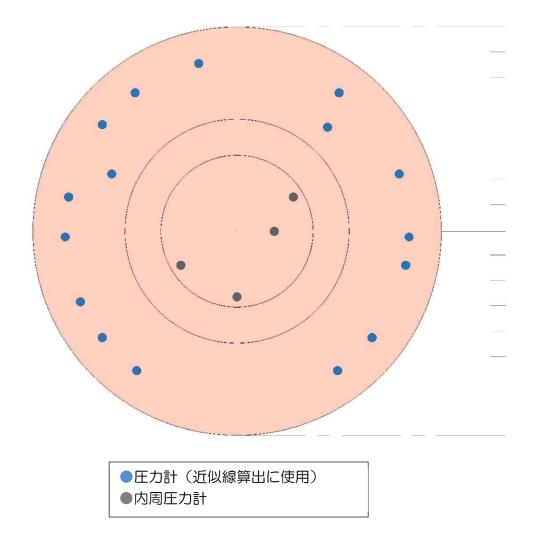
2.2.2 大泉側本線(北行)シールドトンネル工事での対応状況

(1) カッタートルク

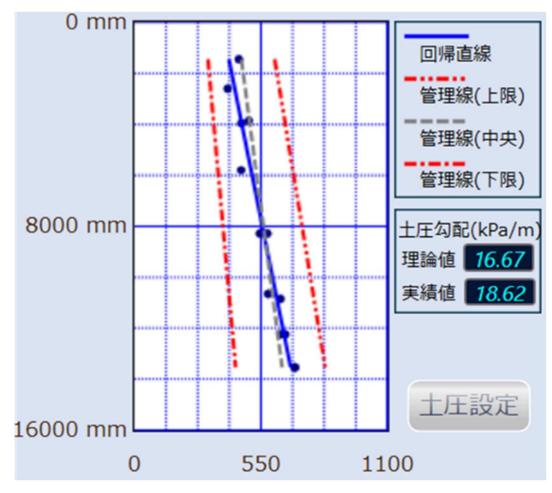
掘進管理フローに基づき、掘進管理システムの監視モニターでカッタートルクをリアルタイムで監視し、管理値内であることを確認した。

min-1

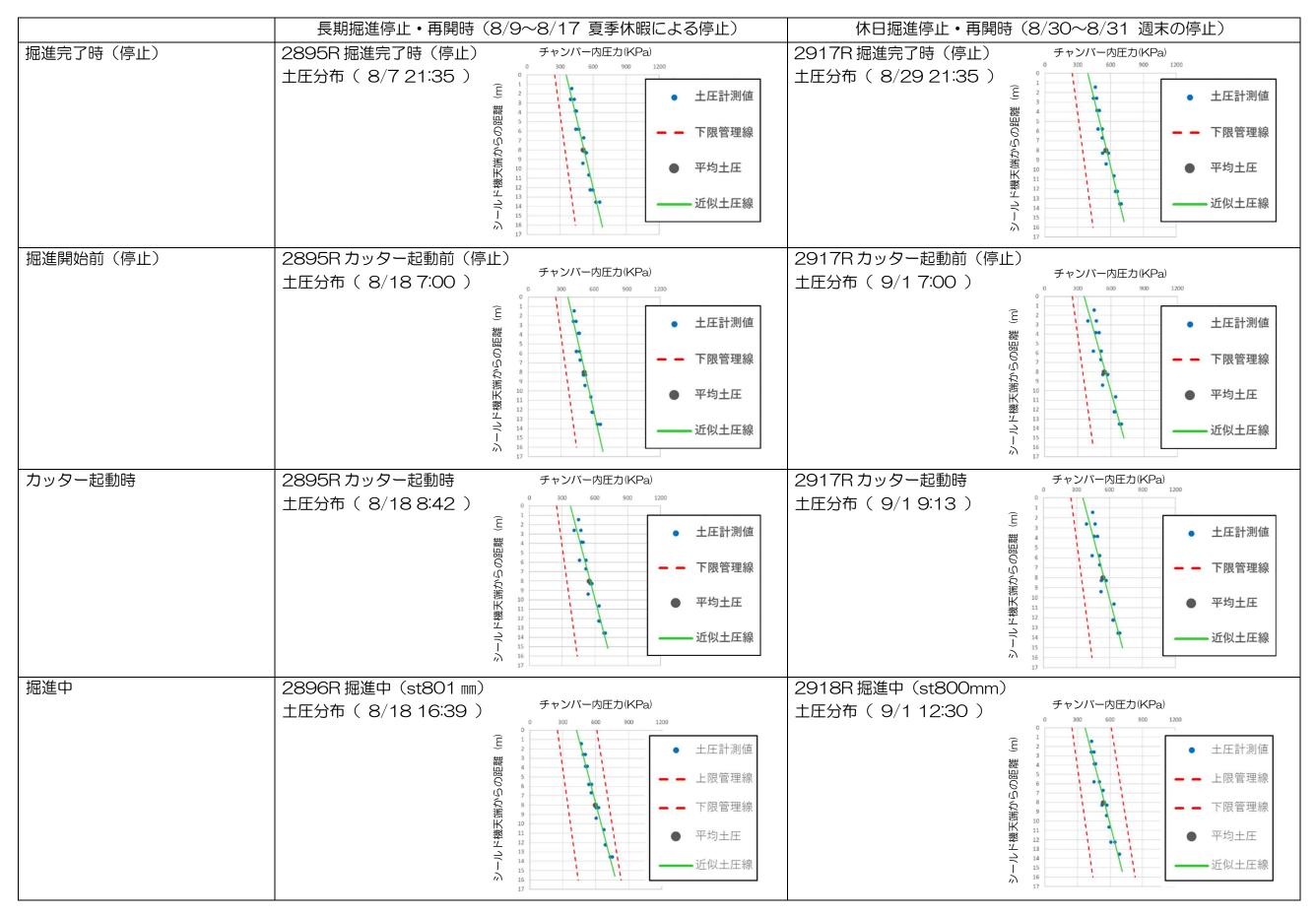

kNm



(2) チャンバー内圧力勾配


掘進管理フローに基づき、掘進管理システムの監視モニターでリアルタイムおよびリング毎にチャンバー内圧力勾配の変化を監視し、理論圧力勾配と同じ傾向を示していること、圧力勾配の傾き・直線性や下部チャンバー内圧力が大きくなるなどの異常がないことを確認した。なお、2893R~2895Rの夏季休暇および 2956R~2958R の坑内土砂搬送設備(ベルトコンベヤー)の段取り替え作業に伴う一時掘進停止の際に、添加材を鉱物系に置き換えたことにより理論圧力勾配が高くなっている。また、2886R 以降の掘進においては、カッタートルクの上昇傾向が確認されたため、各種掘進管理データのモニタリングや排土性状を確認し、添加材に鉱物系を追加したことにより、2886R~2892R および 2896R~2955R の区間は理論圧力勾配がやや高くなっている。

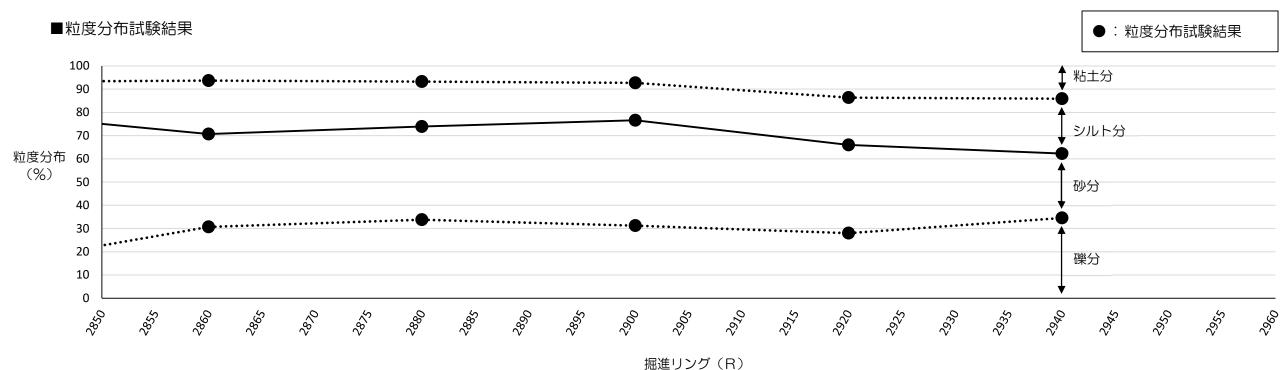
チャンバー内圧力計配置図 (切羽から坑口を望む)



チャンバー内圧力勾配リアルタイム監視状況(2899R)

■掘進停止中のリアルタイムの塑性流動性の確認状況

平日夜間・休日掘進停止から掘進再開までの間も施工データをリアルタイムで監視した。以下に長期掘進停止・休日掘進停止から掘進再開までのチャンバー内圧力勾配データの一例を示す。圧 力勾配の直線性や傾きを確認しており、チャンバー内土砂の分離・沈降の兆候はなく、長期掘進停止・休日停止後の掘進再開時のカッターの起動も円滑に行われた。


(3) 手触、目視、ミニスランプ試験、粒度分布

シールド施工熟練者によりリアルタイムでベルトコンベヤー上の掘削土の性状を目視するとともに、2回/日の頻度で掘削土を採取し、手触、目視、ミニスランプ試験により排土性状の変化を確 認した。当該区間において排土性状の大きな変化は確認されなかった。

20 リングに1回の頻度を基本として掘削土の粒度分布試験を実施し、塑性流動性の低下が懸念される粒度分布ではないことを確認した。

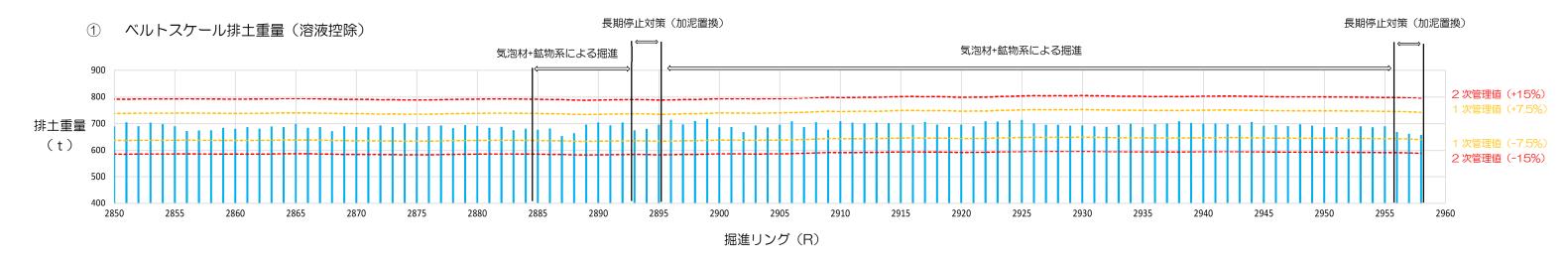
(上表の掘削土は、排土時に高分子材を添加しているもの。)

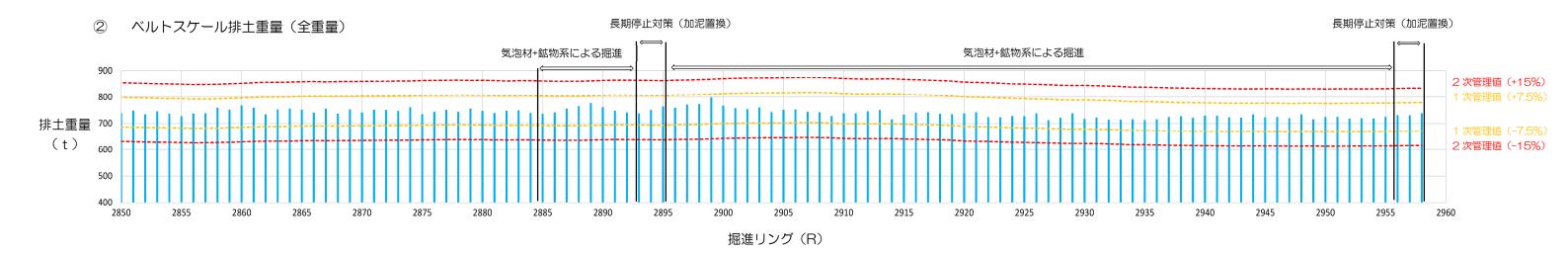
2.3 排土量管理について

2.3.1 第23回東京外環トンネル施工等検討委員会で確認された再発防止対策

(1) 排土管理の内容について

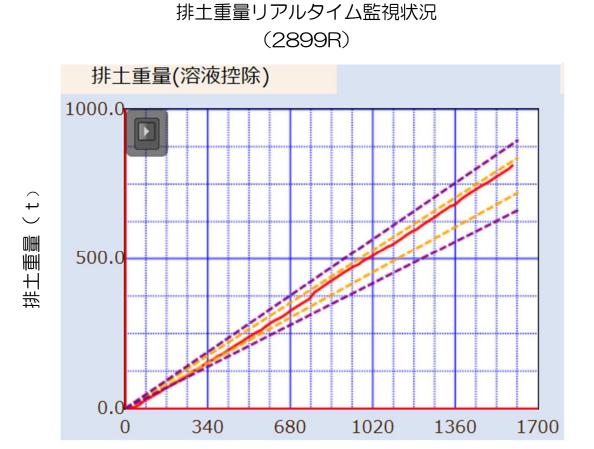
従来は、地盤条件により地山単位体積重量が変化していくことを踏まえ、前 20 リング平均との比較により掘削土重量の傾向管理を行ってきたが、掘削土重量が徐々に増加していく場合などにおいて、過剰な 取込の兆候をより早く把握するため、今後は、ボーリングデータ等から推定した地山単位体積重量を用いて1リング毎に掘削土体積を算出し、実績値と理論値とを比較する絶対値管理も併せて行っていく。

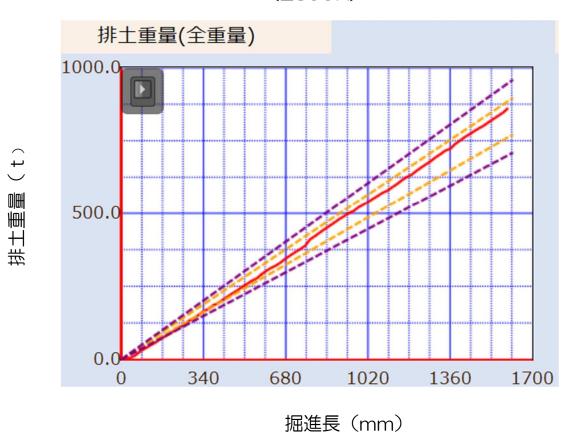

- 〇ベルトスケールで排土重量を計測し、手前20リング平均との比較により以下の排土重量を管理
- ・添加材が全量回収されることを前提とし添加材の全重量を控除した地山重量
- ・添加材の重量を控除しない排土全重量
- 〇これまでの管理値より厳しい±7.5%を1次管理値として設定
- ・閉塞が生じたリングの手前20リングでは、掘削土量が+7.5%を超過しているリングがあることを確認
- ・1 次管理値を±7.5%として設定し、閉塞及び閉塞を契機とする取り込み過剰の兆候をいち早く把握
- 〇排土率(地山掘削土量と設計地山掘削土量の比率)による、理論値と実績値を比較する新たな指標を追加
- ・従来の排土重量の管理では手前 20 リング平均との比較にて取り込み過剰の兆候を把握するが、排土重量が徐々に増加していく場合などにおいては、さらにリング毎の排土率を確認することで、早期に兆候 を把握できる可能性がある (排土率は、添加材が全量回収されることを前提とし添加材の全重量を控除した地山重量を用いて算出)
- 〇地山単位体積重量の変化を確認
- ・掘削土体積や排土率は、地山単位体積重量をボーリングデータを用いて算出するが、10リングかつ1日1回排土を突き固めて計測した排土単位体積重量により、地山単位体積重量の変化を確認
- ○添加材未回収分を考慮した排土率についても確認
- 添加材の回収状況について、チャンバー内土圧勾配より推定したチャンバー内土砂単位体積重量を用いて確認し、過剰な土砂取込みの兆候を確認


管理項目	計測内容	管理手法	単位	1 次管理値	2 次管理値	備考
据削土重量 (掘削土体積)	計測内容 掘削土の重量 (掘削土の体積) (確認頻度」 リアルタイム監視 毎リング管理)	管理手法 (1)添加材の全重量を控除した地山掘削重量(体積) ・ベルトスケールで計測した排土重量から添加材が全量回収されることを前提とし添加材の全重量を控除した地山重量で掘削土量の管理を行う。 ・前20リング平均の掘削土量と比較して、大きなバラツキがないことと管理値内で掘進できていることを確認する。 (2)添加材の重量を控除しない排土全重量(体積) ・ベルトスケールで計測した添加材の重量を控除しない排土全重量で掘削土量の管理を行う。 ・前20リング平均の掘削土量と比較して、大きなバラツキがないことと管理値内で	电位 t (m³)	1 次管理値 前 20 リング平均 ±7.5%以内	2 次管理値 前 20 リング平均 ±15%以内	備考 ・監視モニターでリアルタイムに監視 ・ボーリングデータおよび掘削土の単位体積重量 をもとに換算した掘削土体積も管理 (掘削土の単位体積重量を用いてボーリングデータの単位体積重量を補正)
排土率	地山掘削土量と設計地 山掘削土量の比率 (確認頻度 ₋ リアルタイム監視	掘進できていることを確認する。 (1)ベルトスケールで計測した排土重量から添加材が全量回収されることを前提とし添加材の全重量を控除した地山重量で排土率の管理を行う。	%	設計地山掘削土 量の±7.5%以内	設計地山掘削土 量の±15%以内	・ボーリングデータおよび掘削土の単位体積重量 をもとに換算した掘削土体積も管理 ・添加材が地山へ浸透している場合は、排土率 が過少に評価される
	毎リング管理)	(2)チャンバー内土砂の理論単位体積重量とチャンバー内圧力勾配から推定される 単位体積重量とを比較することにより添加材の浸透量を評価し、それを考慮した 排土率の管理を行う。	%		掘削土量の %以内	 ・ボーリングデータおよび掘削土の単位体積重量をもとに換算した掘削土体積も管理 ・添加材の浸透量を評価し、それを考慮した掘削土体積も管理 ・自立性が高い粘性土等では、チャンバー内圧力勾配から推定される単位体積重量が適応しない場合がある

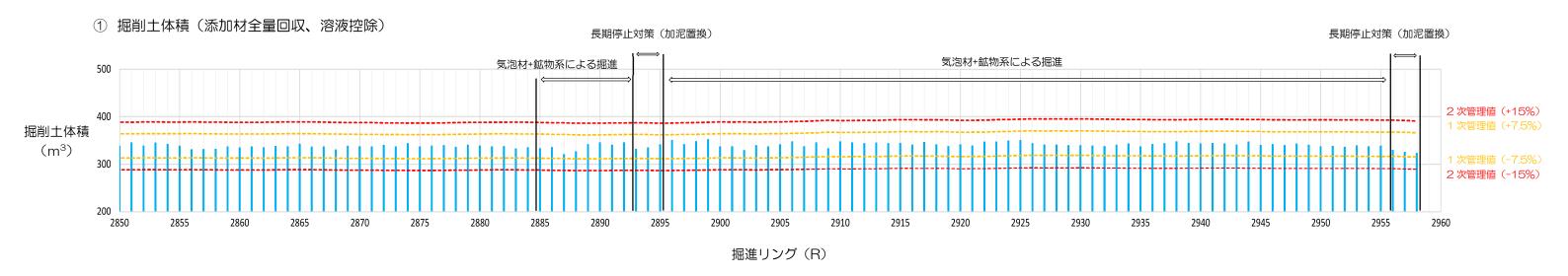
2.3.2 大泉側本線(北行)シールドトンネル工事での対応状況

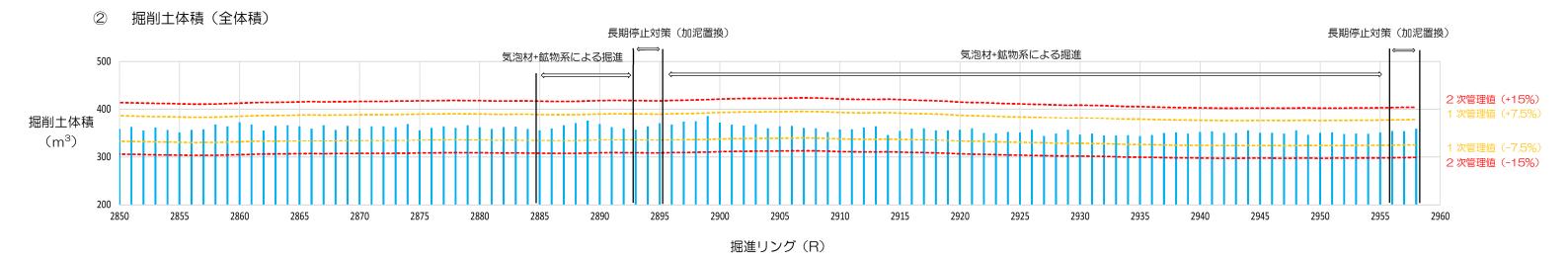
(1) 掘削土重量管理


添加材の全重量を控除した地山掘削土重量、および添加材の重量を控除しない排土全重量について、掘進管理フローに基づき、前 20 リング平均の掘削土量と比較して大きなバラつきがなく、管理値内であることを確認した。

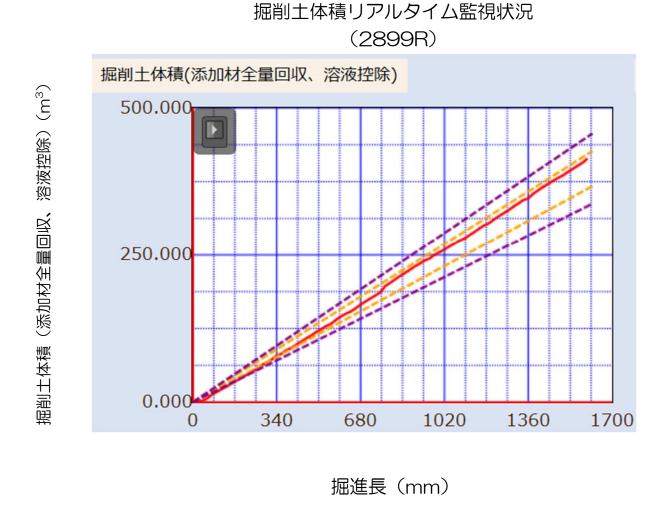

■排土重量のリアルタイムの監視状況

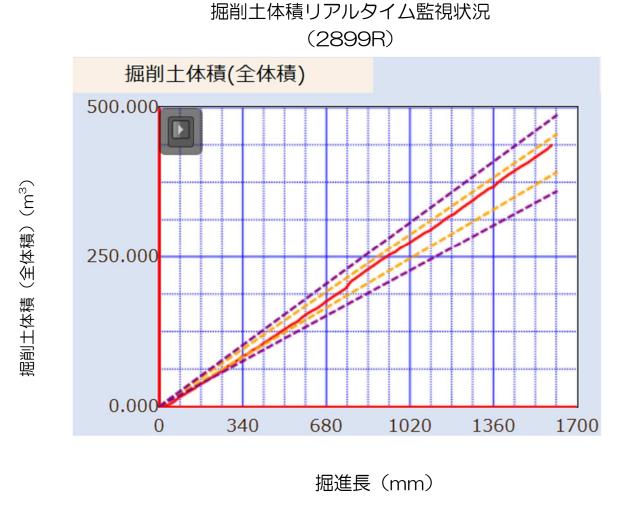
ベルトスケールで計測した排土重量を掘進管理システムの監視モニターでリアルタイムに監視した。


掘進長(mm)

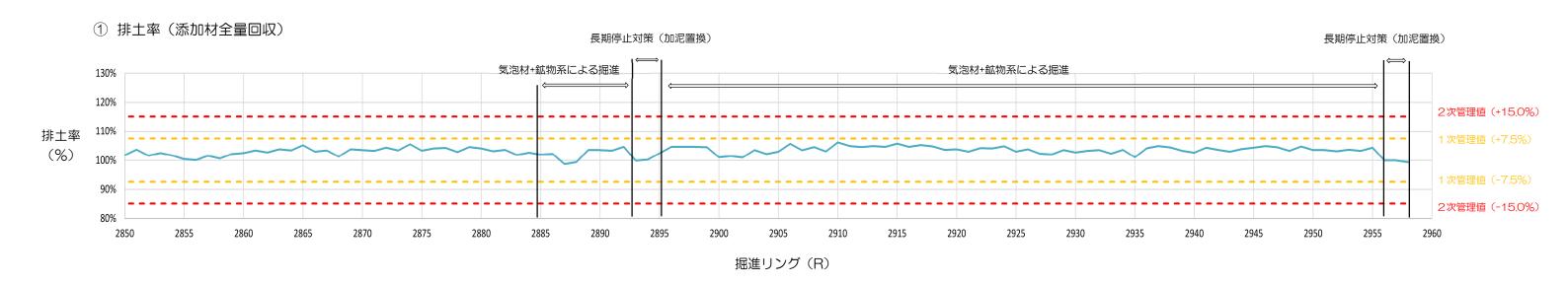

排土重量リアルタイム監視状況 (2899R)

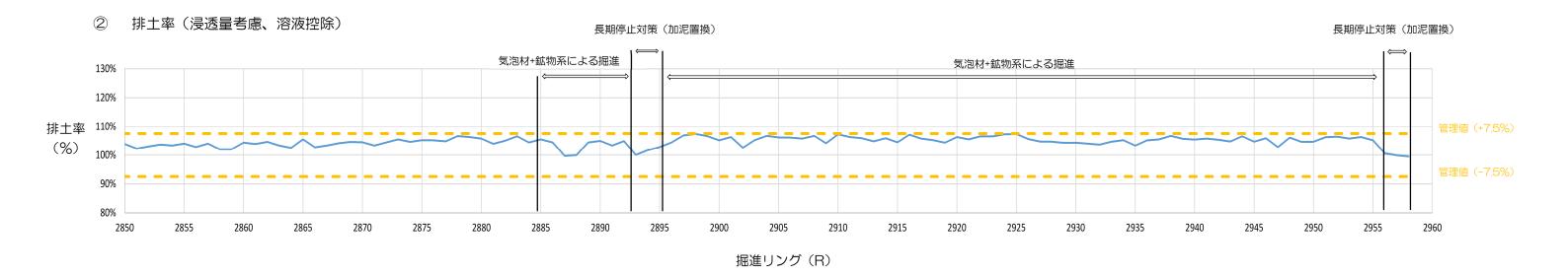
(2) 掘削土体積管理


添加材全量を控除した地山掘削土体積、および添加材全量を控除しない掘削土体積について、掘進管理フローに基づき、前 20 リング平均の掘削土量と比較して大きなバラつきがなく、管理値内であることを確認した。なお、掘削土体積はボーリングデータより得られた単位体積重量より算出した。

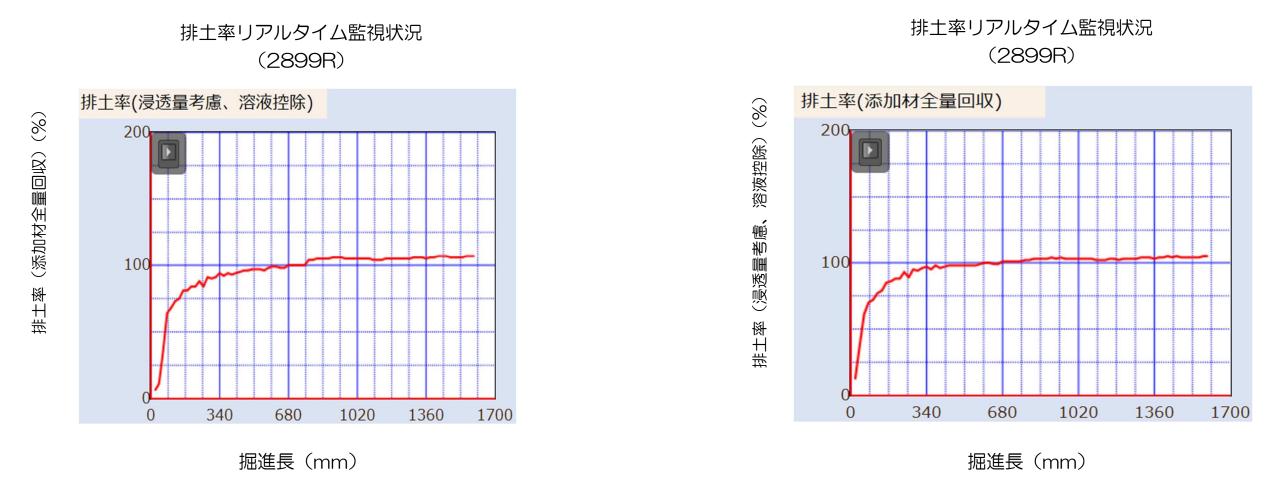


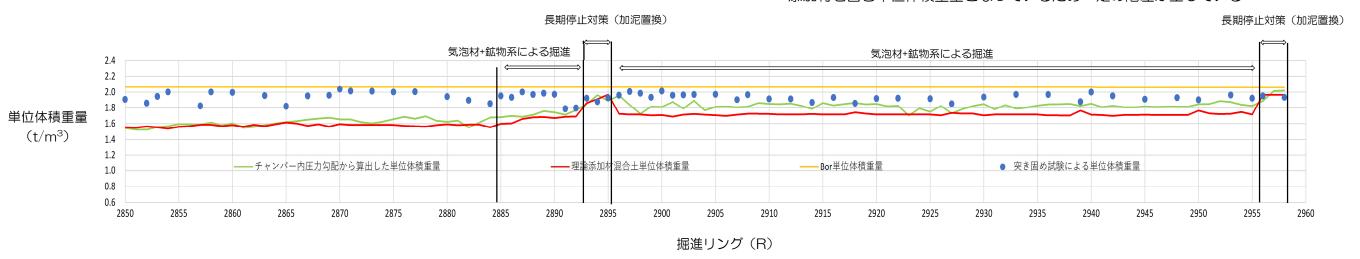
■掘削土体積のリアルタイムの監視状況

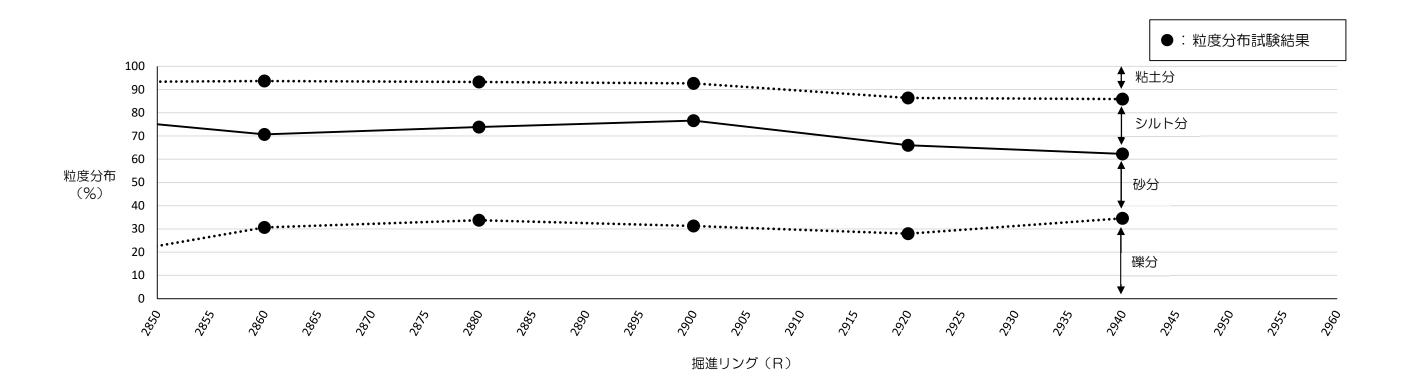

ベルトスケールで計測した排土重量から単位体積重量を用いて算出した掘削土体積を掘進管理システムの監視モニターでリアルタイムに監視した。



(3) 排土率管理


掘進管理フローに基づき、ベルトスケールで計測した排土重量から添加材が全量回収されることを前提とし添加材の全重量を控除した地山重量から算出した排土率を確認した。また、チャンバー 内土砂の理論単位体積重量とチャンバー内圧力勾配から推定される単位体積重量とを比較することにより添加材の地山への浸透量を評価し、それを考慮した排土率を確認した。いずれも管理値内であることを確認した。

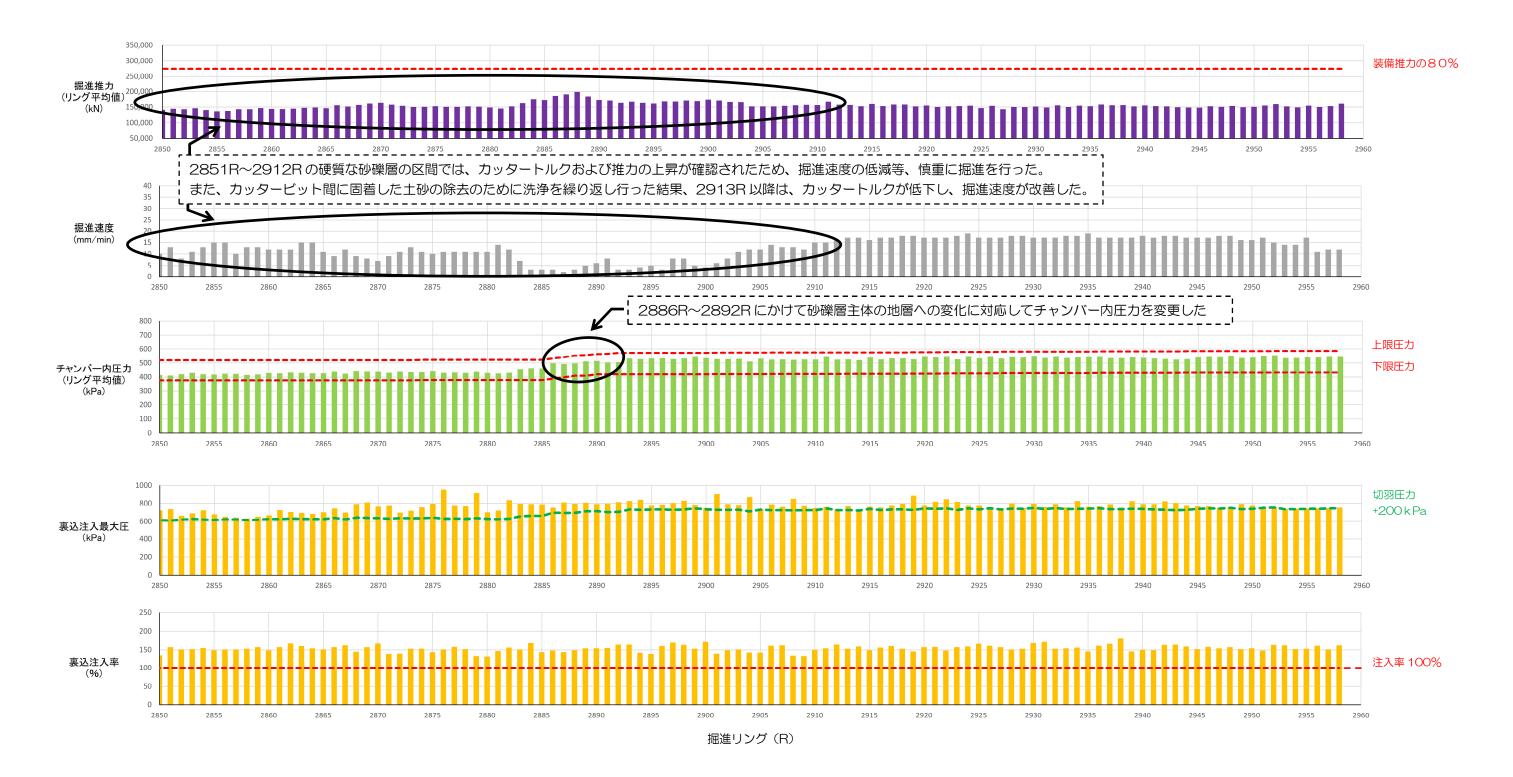

■排土率のリアルタイムの監視状況


「添加材を全量回収されることを想定した排土率」と「添加材の浸透量を考慮した排土率」それぞれについて、掘進管理システムの監視モニターでリアルタイムに監視した。

※リアルタイム排土率は掘進開始時の初期値をOで設定し、掘進開始時は意図的に排土開始のタイミングを遅らせて所定の切羽圧力を保持している。 また、排土重量を計測するベルトスケールの位置がスクリューコンベヤの後ろになるため初期の計測値が遅れて記録される。

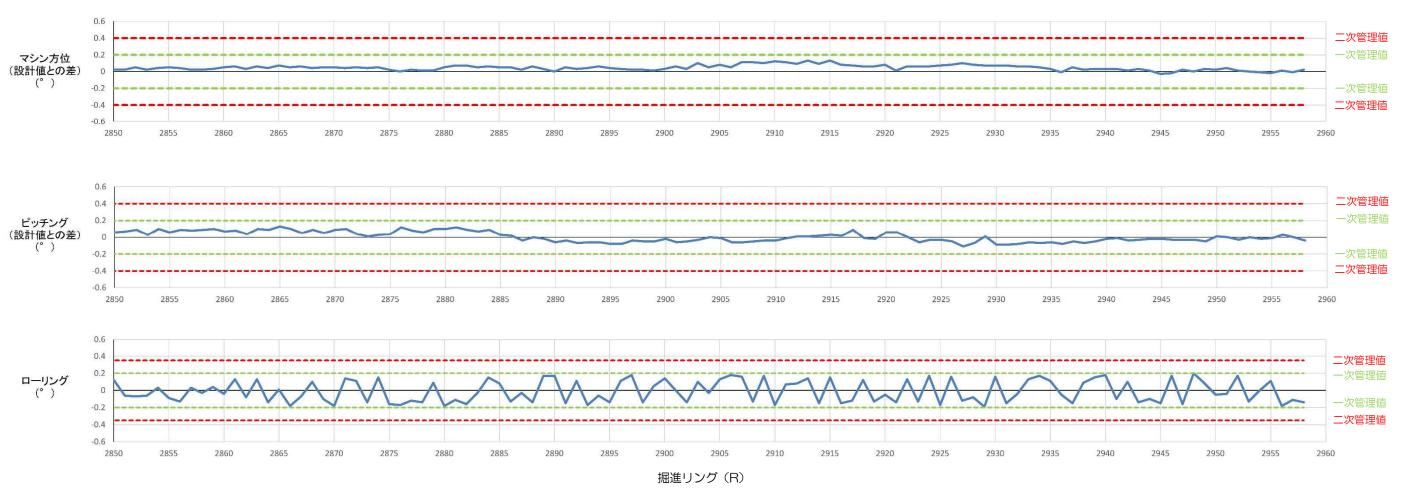
※Bor 単位体積重量は地山の単位体積重量であり、それ以外の単位体積重量は添加材を含む単位体積重量となっているため一定の階差が生じている

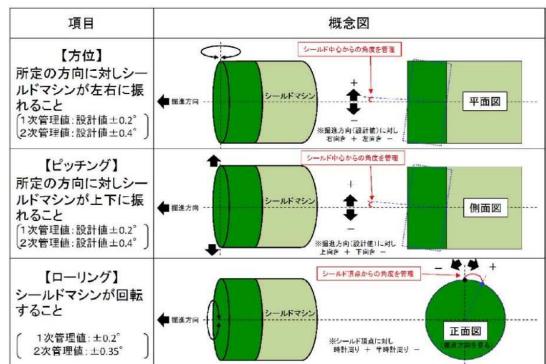
2.4 掘進管理項目および掘進管理基準に関する施工データ

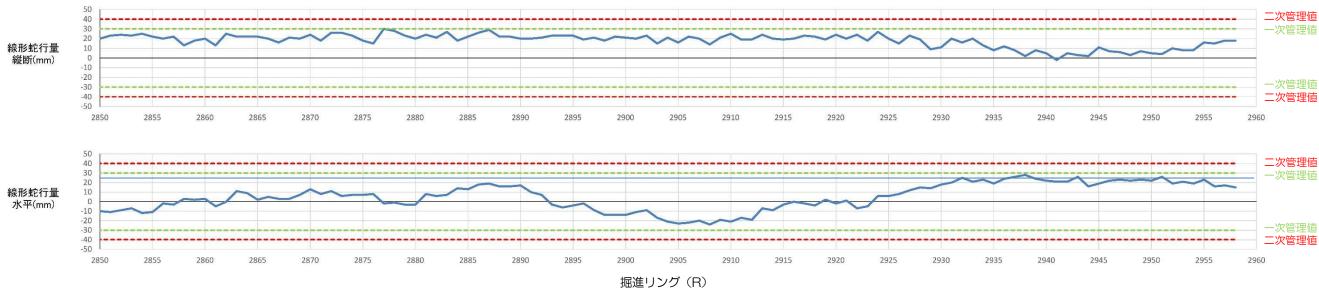

2.4.1 第23回東京外環トンネル施工等検討委員会で確認した再発防止対策 赤枠に示す管理項目の施工データを次ページに示す。

管理項目		監視・測定項目等 (旧) これまでの管理	(新) 今後の管理
		管理値:装備トルクの 80%以下	変更なし
カッター	カッタートルク	管理方法:モニターでリアルタイムで管理	※カッターヘッド回転不能(閉塞)時は、掘進を一時停止し、原因究明・対策検討を十分に実施
			管理方法:モニターでリアルタイムで管理
5 H 1858 L +	1#	推力:装備推力の 80%以下	**
シールドジャッキ	推力	管理方法:モニターでリアルタイムで管理	変更なし
提供净度	提供净件	標準掘進速度:40 mm/min	亦正力
掘進速度	掘進速度	管理方法:モニターでリアルタイムで管理	変更なし
	方位	一次管理值:設計值±0.2°	変更なし
	<u>万</u> 业	二次管理值:設計值±0.4°	
	ピッチング	一次管理値:設計値±0.2°	変更なし
		二次管理值:設計值±0.4°	支えない
マシン方向制御	ローリング	一次管理値: ±0.2°	変更なし
	<u>□</u> -,,,,,	二次管理値: ±0.35°	友丈なし
		一次管理値:蛇行量 30 mm	
	位置計測	二次管理值:蛇行量 40 mm	変更なし
		管理値: 蛇行量 50 mm	
		管理土圧:主働土圧+水圧+予備圧(0.02MPa)	管理土圧:主働土圧+水圧+予備圧(0.02MPa)
土圧	チャンバー内土圧	 管理方法:切羽圧力計計測結果をリアルタイムで管理	チャンバー内圧力値をリアルタイムにて管理(チャンバー内圧力分布から圧力勾配の傾きと直線性を
			確認、必要に応じて改善を実施)
		1 次管理值:前 20R 平均掘削土量±10%以内	1 次管理值:前 20R 平均掘削土量±7.5%以内
	掘削土量	2 次管理値: 前 20R 平均掘削土量±20%以内	2 次管理値:前 20R 平均掘削土量±15%以内
排土管理		管理方法: ベルトスケールの計量結果をリアルタイムで管理	管理方法: ベルトスケールの計量結果をリアルタイムで管理
W = 10.2		-	1 次管理値: 設計掘削土量の排土率±7.5%以内
	排土率	-	2 次管理値: 設計掘削土量の排土率±15%以内
		-	添加材の浸透を考慮した排土率も確認 管理値: ±7.5%以内
		手触、目視により、土砂性状や地山土層の変化を確認	手触、目視により、土砂性状や地山土層の変化を確認
チャンバー内土砂性状	 土砂性状	_	ミニスランプ試験値:事前配合試験結果および直近の掘削土の性状と比較
(塑性流動性確認)		 粒度分布試験を実施し、掘削地山の土層を把握(確認頻度:1回/週を基本)	粒度分布試験を実施し、掘削地山の土層を把握(確認頻度:20 リングに 1 回を基本とし、塑性流動性
		一種 大阪 大阪 大阪 大阪 大阪 大阪 大阪 大	のモニタリングに応じて適宜実施)
	注入圧	注入圧: 切羽圧+0.2Mpa	
裏込注入工	注入量	注入率:100%以上	変更なし
衣だはハエ		管理方法:モニターでリアルタイムで管理。基本的に設定注入圧以上、100%以	
		上の注入率、地山によって注入量は変化する	
地表面変位	掘進時、掘進停止中、事後	管理值: 地表面傾斜角 1.0/1000rad 以下	変更なし

2.4.2 掘進管理項目および掘進管理基準に関する施工データ

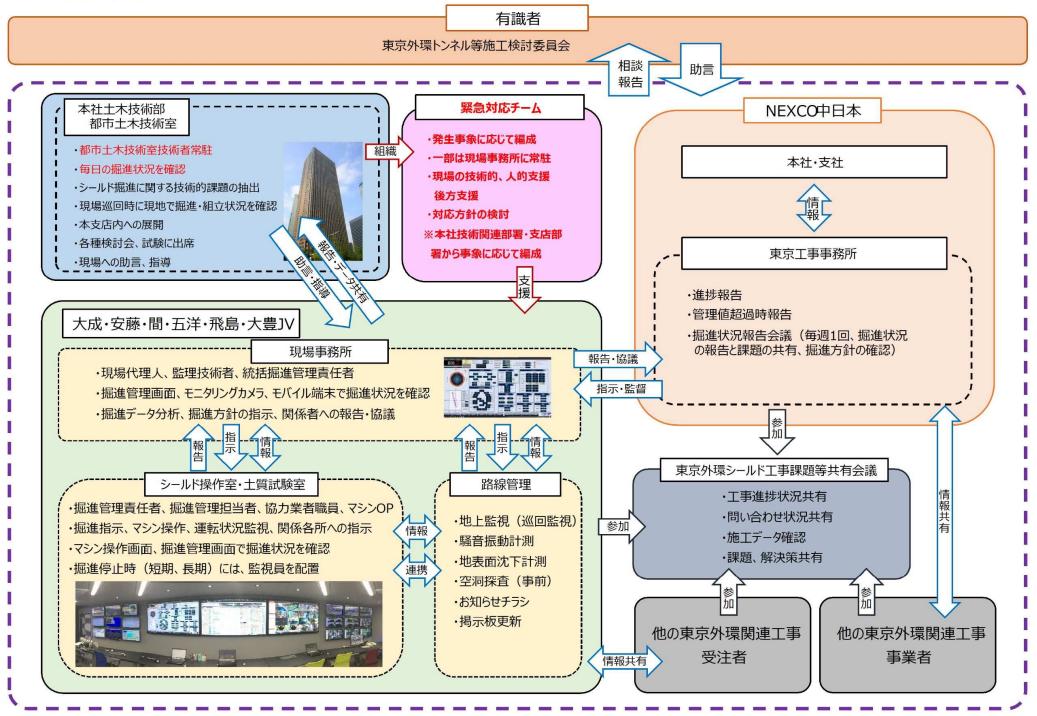

掘進管理フローに基づき、掘進推力、チャンバー内圧力について、管理基準値内であることを確認した。2851R~2912R の硬質な砂礫層の区間では、カッタートルクおよび推力の上昇が確認されたため、掘進速度の低減等、慎重に掘進を行った。また、カッタービット間に固着した土砂の除去のために洗浄を繰り返し行った結果、2913R 以降は、カッタートルクが低下し、掘進速度が改善した。


チャンバー内圧力については、2886R~2892Rにかけて砂礫層主体の地層への変化に対応して圧力を変更した。 裏込注入圧については、注入量(裏込注入率)を確認しながら慎重に施工した。


マシン方向制御の掘進管理項目及びセグメント位置について管理値内であることを確認した。

■マシン方向制御

■セグメント位置(蛇行量)



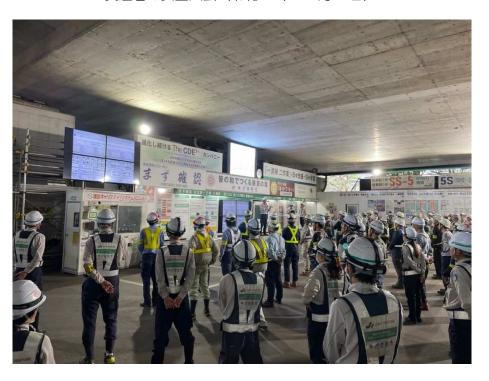
2.5 再発防止対策を踏まえた掘進管理

2.5.1 大泉側本線(北行)シールドトンネル工事での対応

再発防止対策に示す掘進における管理フロー(切羽の安定管理、掘削土量)に基づき、リング毎に各掘進管理項目を監視し、マシンの調整や添加材注入量の調整等を行う。 受注者内部の施工状況のモニタリング体制を強化するとともに、平時からの受発注者間の情報共有体制を構築している。掘進作業にむけて、関係者への日々の掘進状況の定時報告等の情報共有を確実に実施するとともに、緊急時には同様に速やかに情報共有がなされる体制を構築している。

■ 掘進モニタリング体制

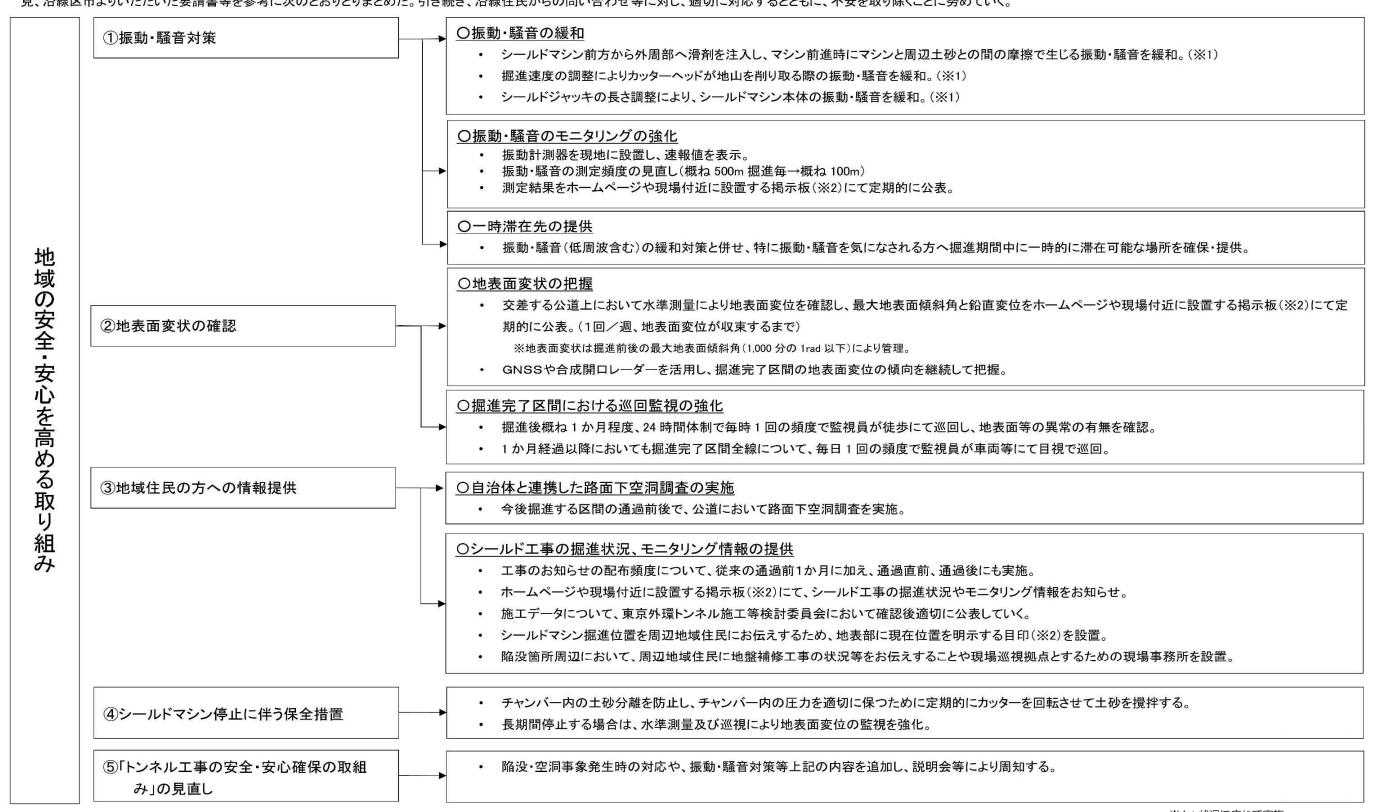
また、受注者間の安全大会を実施するなど様々な情報共有を行っている。


受発注者合同のパトロール(令和7年10月30日)

掘進管理状況

受注者の安全大会(令和7年10月1日)

掘進状況報告会議(オンライン会議)



3 地域の安全・安心を高める取り組みの対応状況

第23回東京外環トンネル施工等委員会における地域の安全・安心を高める取り組みとして以下を確認した。

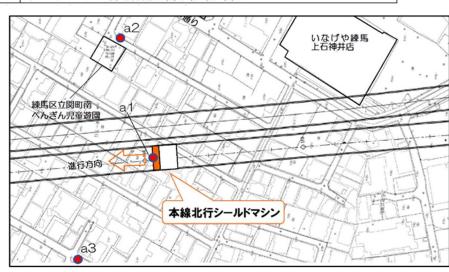
地域の安全・安心を高める取り組み

振動・騒音対策や地盤変状の確認、地域住民の方への情報提供、緊急時の運用の見直しについて、シールドトンネル工事に伴う地域の安全・安心を高める取り組みとして、陥没地域で実施した説明会や相談窓口等においていただいたご意 見、沿線区市よりいただいた要請書等を参考に次のとおりとりまとめた。引き続き、沿線住民からの問い合わせ等に対し、適切に対応するとともに、不安を取り除くことに努めていく。

※1: 状況に応じて実施

※2:設置箇所・手法は自治体と調整

3.1 振動 • 騒音対策

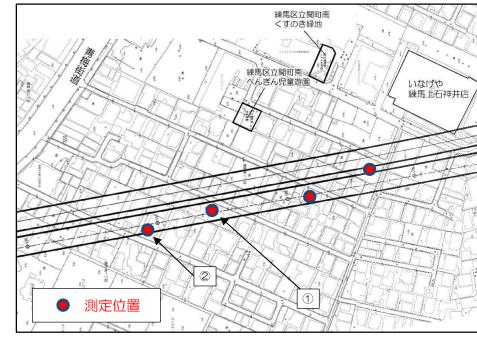

3.1.1 大泉側本線(北行)シールドトンネル工事での対応状況

(1)振動・騒音のモニタリングの強化

トンネル縦断方向に概ね 100m間隔で振動・騒音測定を実施することとしており、下図に示す箇所(公道等)で測定を行い、結果については掲示板や HP で公表している。また、シールドマシン直上付近の位置で簡易計測器を用いた振動・騒音測定を実施し、電光掲示板で測定値を表示した。公道等での測定結果については、振動・騒音・低周波についてシールドエ事の停止中と掘進中で明確な差異は確認されなかった。

【振動・騒音測定】

測定内容	振動レベル(鉛直 Z 方向)、騒音レベル、低周波レベル
測定頻度	トンネル縦断方向に概ね 100m間隔
測定時間	昼夜掘進中、停止中
測定位置	マシン直上と影響範囲端部付近の公共用地3測点 低周波は直上のみ1測点
公表値	 (速報値) 振動レベル L10 (シールドマシン直上付近の 1 点) 騒音レベル LA5 (シールドマシン直上付近の 1 点) (確定値) 振動レベル L10 騒音レベル LA5 低周波レベル L50、LG5
掲示方法	(速報値) 現地付近の掲示板等に掲示 (確定値) ホームページと現地付近の掲示板等に掲示

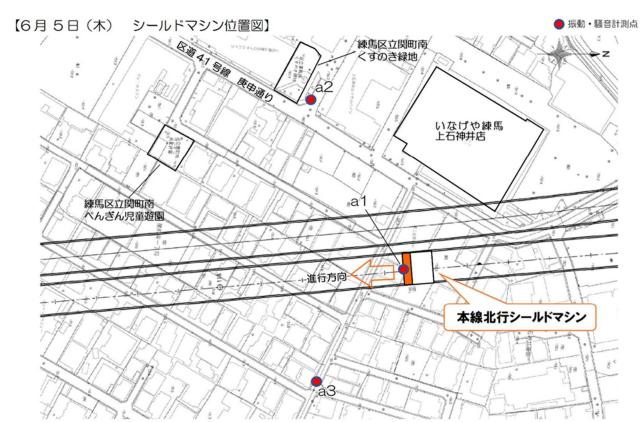


測定状況

【簡易測定】

測定内容	振動レベル(鉛直 Z 方向)、騒音レベル
測定頻度	掘進稼働日
測定時間	9 時~20 時
測定位置	シールドマシン直上付近の公用地 1 か所
公表値	Z 方向振動レベル(瞬間値)、騒音レベル(瞬間値)
掲示方法	電光掲示板で自動掲示

測定位置(進捗に合わせてシールドマシン直上付近を測定)


測定状況

● 測定位置

6月5日(木) 8:00~22:00 振動・騒音(確定値) 測定結果

振動 :シールド工事の停止中と掘進中で明確な差異は確認されず、規制基準値以内であった。 騒音 : シールド工事の停止中と掘進中で明確な差異は確認されず、規制基準値以内であった。

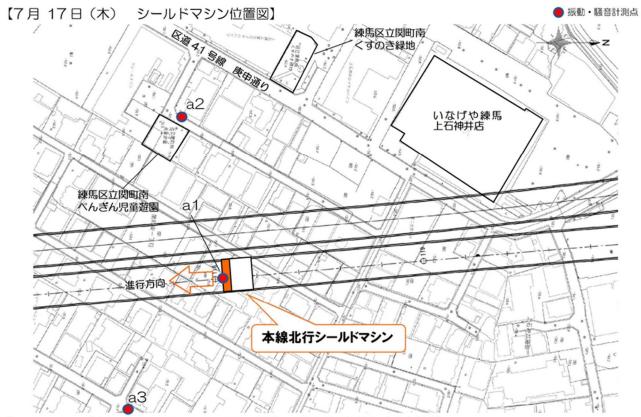
低周波音 : シールド工事の停止中と掘進中で明確な差異は確認されなかった。

【6月5日(木) 8:00~22:00 振動・騒音計測結果(確定値)】

		a1			a2			аЗ	
	停止中 最大	掘進中 最大 (昼)	掘進中 最大(夜)	停止中 最大	掘進中 最大 (昼)	掘進中 最大 (夜)	停止中 最大	掘進中 最大 (昼)	掘進中 最大 (夜)
振動レベル L ₁₀ (dB)	43	45	40	52	53	48	41	42	33
騒音レベル Las (dB)	59	60	56	68	69	66	59	60	56
低周波レベル L ₅₀ (dB)	83	85	72						
低周波レベル Lgs (dB)	82	86	73						

- *振動レベル、騒音レベル、低周波レベルの測定はシールドマシン通過時にその直上付近で実施しています。
- *計測点はシールドマシン中心および影響範囲端部を基本とし、公道などで実施しています。
- *上表は、特異値(例:大型車両通過に伴う振動、緊急車両サイレンなど)を除外した数値を示しています。
- *昼…19 時まで 夜…19 時以降

【振動レベルL10】 【騒音レベル LA5】 【低周波レベルL50】


振動レベルをある時間設定したとき、全測定値の大きい方から 10%目の値を L10 と表します。 騒音レベルをある時間測定したとき、全測定値の大きい方から 5%目の値を Las と表します。 1~80Hz の周波数範囲内をある時間測定したとき、全測定値の中央値をL50と表します。

【低周波レベル Lcs】 1~20Hz の周波数範囲内をある時間測定したとき、全測定値の大きい方から 5%目の値を Lcs と表します。

7月17日(木)8:00~22:00振動·騒音(確定値)測定結果

振動 :シールド工事の停止中と掘進中で明確な差異は確認されず、規制基準値以内であった。 騒音 : シールド工事の停止中と掘進中で明確な差異は確認されず、規制基準値以内であった。

低周波音 : シールド工事の停止中と掘進中で明確な差異は確認されなかった。

【7月17日(木) 8:00~22:00 振動·騒音計測結果(確定値)】

		a1			a2			аЗ	
	停止中 最大	掘進中 最大 (昼)	掘進中 最大 (夜)	停止中 最大	掘進中 最大 (昼)	掘進中 最大 (夜)	停止中 最大	掘進中 最大 (昼)	掘進中 最大 (夜)
振動レベル L ₁₀ (dB)	35	36	35	45	45	44	34	35	30
騒音レベル Las (dB)	59	59	50	59	61	53	62	62	56
低周波レベル L50 (dB)	93	93	83						
低周波レベル Las (dB)	95	97	85						

- *振動レベル、騒音レベル、低周波レベルの測定はシールドマシン通過時にその直上付近で実施しています。
- *計測点はシールドマシン中心および影響範囲端部を基本とし、公道などで実施しています。
- *上表は、特異値(例:大型車両通過に伴う振動、緊急車両サイレンなど)を除外した数値を示しています。
- *昼…19 時まで 夜…19 時以降

【振動レベルL10】 【騒音レベル LA5】 【低周波レベルL50】

振動レベルをある時間設定したとき、全測定値の大きい方から 10%目の値を L10 と表します。 騒音レベルをある時間測定したとき、全測定値の大きい方から5%目の値をLA5と表します。 1~80Hz の周波数範囲内をある時間測定したとき、全測定値の中央値をL50と表します。

【低周波レベルLG5】 1~20Hz の周波数範囲内をある時間測定したとき、全測定値の大きい方から 5%目の値を LG5 と表します。

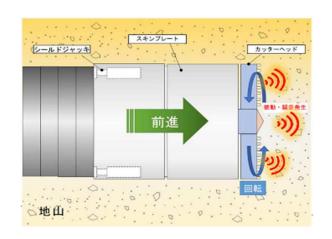
(2)振動・騒音の緩和

令和7年7月1日から令和7年10月31日においては、シールド掘進中にシールドマシン直上周辺の住民から振動・騒音のお問い合わせを北行・南行あわせて6件受けた。なお、大泉側本線 (南行)との距離が小さいため、お問い合わせは両工事を合計した件数としている。当該住民にヒアリングを行ったところ、一部についてはシールド掘進に起因する振動・騒音の可能性があること が考えられたため、以下の振動・騒音対策を状況に応じて実施した。対策の実施後、当該住民に再度ヒアリングを行ったところ、振動・騒音は徐々に低減したというご意見と、依然として振動・騒音を感じるというご意見をそれぞれ受けたところである。今後もお問い合わせに対し、丁寧に対応しながら掘進を行っていく。

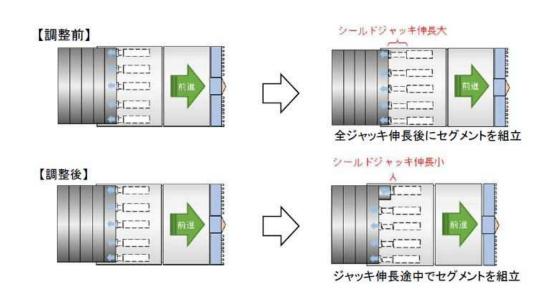
〇想定される振動・騒音発生のメカニズム

1. 前進する際に、シールドマシンのスキンプレートの周辺の土砂の摩擦から発生する振動・騒音

○振動・騒音抑制対策


- ・スキンプレートと地山との間に滑剤を充填することにより摩擦低減
- ・シールドジャッキの可動長を短い状態で運用することで、ジャッキの揺れ幅を 抑制し、シールドマシン本体の振動・騒音を緩和。(状況に応じて実施)

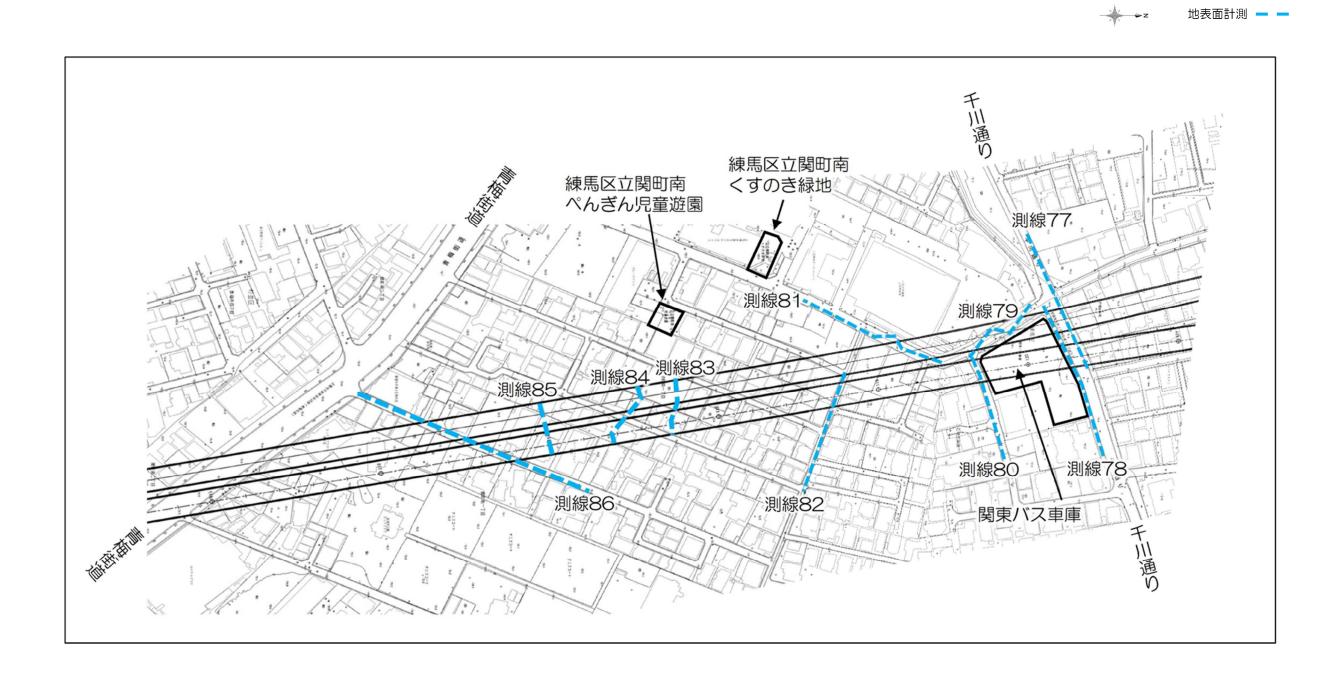
◆滑剤


今回掘進区間の土質に合わせ、鉱物系滑剤を使用した

材料	①鉱物系	②水溶性高分子系
	淡黄色粉体	乳白色~淡黄色液体
外観		
比重	2.5~2.7	1.02~1.08(25℃)
Нq	9.0~11.0(2%懸濁液)	6.0~8.0(1%液)
特徴	持続性が高く、継続的な摩擦低 滅効果が期待できる	粘性土において、摩擦低減効 果が期待できる

2. シールドマシンのカッターヘッドで、地山を削り取る際に発生する振動・騒音

- ・掘進速度の調整によりカッターヘッドが土砂礫を削り取る際の振動・騒音を緩和。 (状況に応じて実施)
- ◆ジャッキ長さの調整による掘進


(3) 一時滞在先の提供

地域の安全・安心を高める取り組みでは、振動・騒音(低周波を含む)の緩和対策と併せ、特に振動・騒音を気にされる方へ掘進期間中に一時的に滞在可能な場所を確保・提供することとしている。今回の報告対象期間では、1件の一時滞在先を提供した。(うち、1件は6月30日以前から継続)

3.2 地表面変状の確認

① 地表面計測

交差する公道上において水準測量により地表面変位をシールド通過まで1回/日、通過後1回/月の頻度で変位が収束するまで計測を実施する計画である。 測量結果については、地表面最大傾斜角、鉛直変位をホームページや現場付近に設置している掲示板にて1回/週の頻度で定期的に公表している。 今回の掘進区間における掘進前後の地表面最大傾斜角は1000分の1rad以下であることを確認した。

【地表面計測結果】

	基準値													最大例	頁斜角(rad)													収束	
測線	測定日	5月2日	5月9日	5月16日	5月23日	5月30日	6月6日	6月13日	6月20日	6月27日	7月4日	7月11日	7月18日	7月25日	8月1日	8月8日	8月15日	8月22日	8月29日	9月5日	9月12日	9月19日	9月26日	10月3日	10月10日	10月17日	10月24日	10月31日	確認日	収束確認
77	2025年 2月13日	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	2025年 5月9日	0.1/1,000
78	2025年 2月13日	_	_	_	_	_	1	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_		_	2025年 5月9日	0.1/1,000
79	2025年 2月21日	0.1/1,000	0.0/1,000	0.0/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	2025年 7月21日	0.1/1,000
80	2025年 2月28日	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.2/1,000	0.3/1,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	2025年 7月21日	0.1/1,000
81	2025年 3月4日	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.2/1,000	_	_	_	_	_	_	_	_	_	-	_	_	_	2025年 10月4日	<u>*</u> *1
82	2025年 3月19日	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.2/1,000	0.3/1,000	_	_	_	_	-	_	_	_	2025年 10月11日	0.2/1,000
83	2025年 7月9日	_	_	_	_	_	_	_	_	_	_	_	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	_	_	_	-	_	_	_	_	_
84	2025年 7月9日	_	_	_	_	_		_	_	_	_	_	0.1/1,000	0.0/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.3/1,000	0.3/1,000	0.3/1,000	0.3/1,000	0.4/1,000	0.3/1,000	0.1/1,000	0.3/1,000	0.3/1,000	0.1/1,000	_	_
85	2025年 8月12日	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.3/1,000	0.1/1,000	_	_
86	2025年 8月12日	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.1/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.2/1,000	0.1/1,000	0.1/1,000	0.1/1,000	0.2/1,000	0.2/1,000	0.1/1,000	_	_

※収束確認:通過後1回/月の頻度で計測を実施し、鉛直変位の変化量が前回計測値から±1mm以内

※1 測線81は、他工事による計測点の亡失のため、最大傾斜角の算出が不可

【地表面計測結果】

	基準値													最大鉛	直変位(r	mm)														収束	確認	
測線	測定日	5月2日	5月9日	5月16日	5月23日	5月30日	6月6日	6月13日	6月20日	6月27日	7月4日	7月11日	7月18日	7月25日	8月1日	8月8日	8月15日	8月22日	8月29日	9月5日	9月12日	9月19日	9月26日	10月3日	10月10日	10月17日	10月24日	10月31日	前回 計測日	前回 計測値	収束 確認日	収束 確認値
77	2025年 2月13日	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	-	_	2025年 4月9日	-2	2025年 5月9日	-1
78	2025年 2月13日	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2025年 4月9日	-2	2025年 5月9日	-2
79	2025年 2月21日	-2	-1	-1	1	-1	-3	-4	-5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	2025年 6月21日	-4	2025年 7月21日	-5
80	2025年 2月28日	-3	-3	-3	-2	-2	-3	-4	-5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	2025年 6月21日	-4	2025年 7月21日	-5
81	2025年 3月4日	-1	1	-1	1	-1	-1	-2	-3	-2	-2	-2	-2	-2	-4	-	-	_	_	-	_	_	_	_	_	-	-	_	2025年 9月4日	-5	2025年 10月4日	-5
82	2025年 3月19日	2	1	-1	2	-2	1	-1	-1	-2	-1	-2	-2	-2	-2	-2	-3	-4	-5	-7	1	_		_	_	_	-	_	2025年 9月11日	-6	2025年 10月11日	-7
83	2025年 7月9日	_	-	-	_	-	_	-	_	-	_	-	2	-1	2	2	2	2	-1	-1	-2	_	_	_	_	-	-	_	_	_	_	_
84	2025年 7月9日	_	_	_	_	-	_	-	_	-	_	_	2	1	2	1	2	2	2	-2	-3	-3	-5	-5	-6	-8	-8	-7	_	_	_	_
85	2025年 8月12日	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	1	2	2	-1	-2	-1	-2	-4	-5	-6	-6	_	_	_	
86	2025年 8月12日	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	1	3	2	1	-1	-1	-1	-1	-1	-2	-2	_	_	_	

※収束確認:通過後1回/月の頻度で計測を実施し、鉛直変位の変化量が前回計測値から±1mm以内

② MMS (3D 点群調査)、GNSS 、合成開口レーダー

掘進作業を実施する前に MMS(3D点群調査)を実施済みであり、GNSS や合成開口レーダーを活用して掘進完了区間の地表面変位の傾向の把握を継続して実施した。

③巡回監視の強化

掘進時及び掘進後概ね1ヶ月程度は24時間体制でシールドマシンの掘進工事箇所周辺を徒歩等により巡視員が巡回を実施している。 また、1ヶ月経過以降も掘進完了区間については、毎日1回の頻度で車両等または徒歩により巡回を実施している。 これまで掘進工事箇所周辺において地表面変状等の周辺の生活環境に影響を与える事象は確認されていない。

3.3 地域住民の方への情報提供

3.3.1 自治体と連携した路面下空洞調査の実施

掘進作業実施前に、今後掘進する区間の安全を確認するため、公道を対象に「路面下空洞探査車(車載型レーダー)」(狭隘部は作業 員によるハンディ型地中レーダーの探査機使用)を用いて、路面下空洞調査を実施した。なお、調査結果は道路管理者等と協議を行い、 必要な対応を適切に行っている。

調査位置図(青梅街道~神明通り)

(車道部)

(歩道部)

332 シールド工事の掘進状況、モニタリング情報の提供

地域住民の方への情報提供として、シールド工事の掘進状況及びモニタリング情報の提供を行っている。 具体的には、①工事のお知らせの配布頻度の見直し、②ホームページや現場付近の掲示板を用いたシールド 工事の掘進状況や計測結果のお知らせ、③施工データの適切な公表、④シールドマシン直上付近での振動・ 騒音の値の公表および掘進位置の目印の設置を実施している。

① 工事のお知らせの配布

シールド通過前1ヶ月、通過前1週間、通過後1ヶ月にお知らせの配布を実施している。

通過1ヶ月前

令和7年10月22日

※ ■ | と | 印は、10月21日時点のシールド機の位置を示しております

(裏面あり)

東京外かく環状道路 本線トンネル工事のお知らせ(通過1か月前)

皆様には日ごろから、東京外かく環状道路事業にご理解とご協力いただきありがとうございます。

大泉JCT(練馬区大泉町)から発進した本線トンネルのシールド機は、図中の時期に通過を予定しておりますのでお知らせいたします。シールド機通過の際は振動を感じる場合があります。ご迷惑をおかけいたしますがご理解ご協力をお願いいたします。

また、地上部ではシールド機の通過前・中・後に地表面高さを測量するとともに、掘進工事箇所周辺で異常が生じていないか確認するため、警戒車両等で巡回します。振動騒音に関する調査も行ってまいります。

トンネル工事や測量、巡回等を行う際は安全に十分努め作業を行いますので、引き続きご理解とご協力をお願いいたします。

※シールド機通過のおおむね1週間前とシールド機通過後にあらためてお知らせいたします。

お問い合せ内容	お問い合せ先(代表)
・今後の掘進予定に関すること ・外環事業全般に関すること	中日本高速道路㈱ 東京支社 東京工事事務所 TEL: <u>0120-016-285</u> (フリーダイヤル: 平日9:00~17:30) ※12月29日~1月3日は除く e-mail アドレス <u>mail-gaikan@c-nexco.co.jp</u>
・工事に関すること・工事中の振動・騒音などに関すること	大泉発進 本線トンネル大泉南工事担当 TEL: 03-6904-5886 (24時間工事情報受付ダイヤル)

●お問い合わせ先(異常時やその他お問い合わせ)

通過 1 週間前

令和7年10月29日

東京外かく環状道路 本線トンネル工事のお知らせ(通過1週間前)

皆様には日ごろから、東京外かく環状道路事業にご理解とご協力いただきありがとうございます。

大泉JCT(練馬区大泉町)から発進した本線トンネルのシールド機は、図中の時期に通過を予定しておりますのでお知らせいたします。シールド機通過の際は振動を感じる場合があります。ご迷惑をおかけいたしますがご理解ご協力をお願いいたします。

また、地上部ではシールド機の通過前・中・後に地表面高さを測量するととも に、掘進工事箇所周辺で異常が生じていないか確認するため、警戒車両等で巡回 します。振動騒音に関する調査も行ってまいります。

トンネル工事や測量、巡回等を行う際は安全に十分努め作業を行いますので、引き続きご理解とご協力をお願いいたします。

※シールド機通過後にあらためてお知らせいたします。

お問い合せ内容	お問い合せ先(代表)
・今後の掘進予定に関すること ・外環事業全般に関すること	中日本高速道路㈱ 東京支社 東京工事事務所 TEL: 0120-016-285 (フリーダイヤル: 平日9:00-17:30) ※12月29ヨ~1月3日は除く e-mail アドレス <u>mail-galkan@c-nexco.co.jp</u>
・工事に関すること ・工事中の振動・騒音などに関すること	大泉発進 本線トンネル大泉南工事担当 TEL: <u>03-6904-5886</u> (24時間エ事情報受付ダイヤル)

(裏面あり)

通過後1ヶ月

令和7年8月27日

東京外かく環状道路 本線トンネル工事のお知らせ(シールドマシン通過)

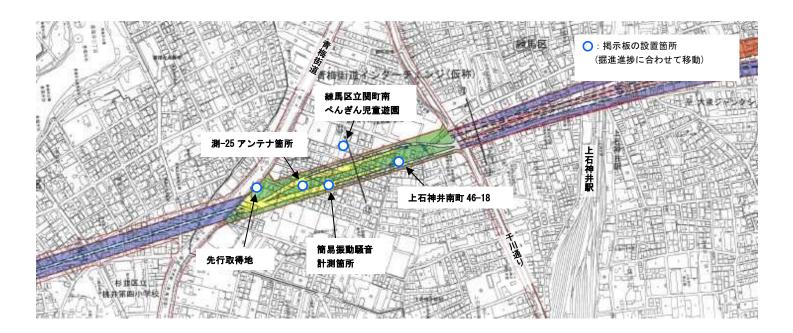
皆様には日ごろから、東京外かく環状道路事業にご理解とご協力いただきありがとうございます。

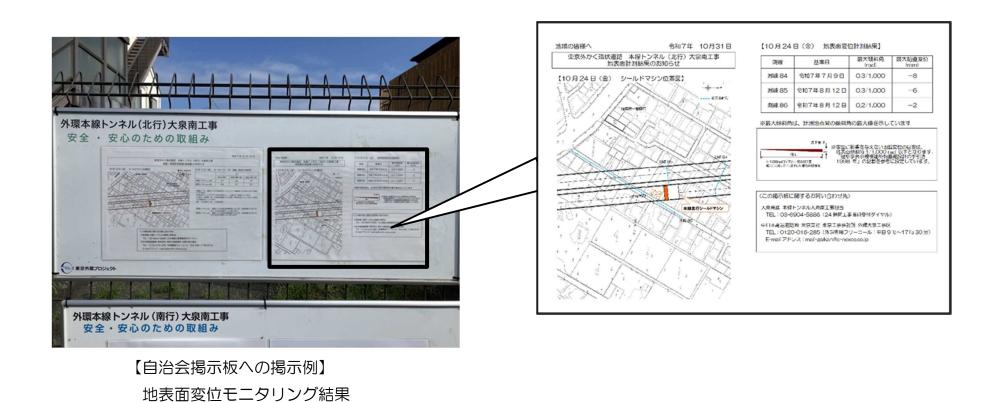
事前にお知らせしておりました大泉JCT(練馬区泉町)から発進した本線トンネルのシールド機が通過いたしましたことをお知らせいたします。

これまで、地表面高さの測量および徒歩等による巡回を実施しており異常はございませんでした。

引き続き、地表面高さの測量を変位が収束するまで継続し、計測結果について 掲示板・HPにて公表してまいります。併せて警戒車両等での巡回も毎日行ってま いります。

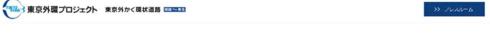
今後もトンネル工事や測量、巡回等を行う際は安全に十分努め作業を行いますので、引き続きご理解とご協力をお願いいたします。


※ ■ と ● 印は、8月26日時点のシールド程の位置を示しております


●お問い合わせ先(異常時やその他お問い合わせ)

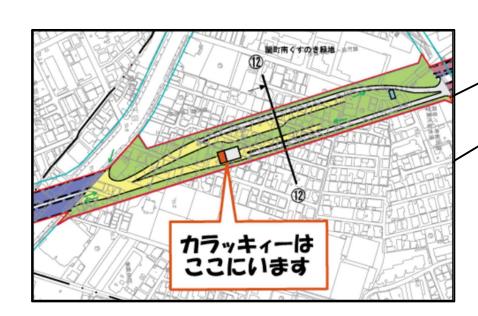
●お同じられた(英市時ででの他の同じられた)	
お問い合せ内容	お問い合せ先(代表)
・今後の掘進予定に関すること ・外環事業全般に関すること	中日本高速道路㈱ 東京支社 東京工事事務所 TEL: 0120-016-285 (フリーダイヤル: 平日9:00~17:30) ※12月29日~1月3日は除く e-mail アドレス mail-gaikan@c-nexco.co.jp
・工事に関すること ・工事中の振動・騒音などに関すること	大泉発進 本線トンネル大泉南工事担当 TEL: <u>03-6904-5886</u> (24時間工事情報受付ダイヤル)

(裏面あり)


② ホームページや現場付近の掲示板を用いたシールド工事の掘進状況や計測結果のお知らせ 東京外環事業のホームページに加え、新たに掲示板を設置するなどして工事の情報提供を行っている。

【ホームページ】

シールドマシン位置と騒音・振動等のモニタリング結果の公表



- ③ 施工データの適切な公表 東京外環トンネル施工等検討委員会において確認した後、適切に公表していく。
- ④ シールドマシン直上付近での振動・騒音の値の公表および掘進位置の目印の設置 シールドマシン直上付近での振動・騒音のモニタリングについて、計測場所に電光掲示板を配置し振動・騒音のリアルタイムな値を表示している。 また、シールドマシン掘進位置を周辺地域住民の方へお伝えするため目印を現地に表示している。

【シールドマシン直上付近での振動・騒音の値(簡易計測値)の表示】 【掘進位置のお知らせ】

【立て看板】

